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Bromide and resting-cell bacteria tracer tests conducted
in a sandy aquifer at the U.S. Geological Survey Cape
Cod site in 1987 were reinterpreted using a three-dimensional
stochastic approach. Bacteria transport was coupled to
colloid filtration theory through functional dependence of local-
scale colloid transport parameters upon hydraulic
conductivity and seepage velocity in a stochastic advection-
dispersion/attachment-detachment model. Geostatistical
information on the hydraulic conductivity (K) field that was
unavailable at the time of the original test was utilized
as input. Using geostatistical parameters, a groundwater
flow and particle-tracking model of conservative solute
transport was calibrated to the bromide-tracer breakthrough
data. An optimization routine was employed over 100
realizations to adjust the mean and variance of the natural-
logarithm of hydraulic conductivity (lnK) field to achieve
best fit of a simulated, average bromide breakthrough curve.
A stochastic particle-tracking model for the bacteria
was run without adjustments to the local-scale colloid
transport parameters. Good predictions of mean bacteria
breakthrough were achieved using several approaches for
modeling components of the system. Simulations incor-
porating the recent Tufenkji and Elimelech (Environ. Sci.
Technol. 2004, 38, 529-536) correlation equation for
estimating single collector efficiency were compared to
those using the older Rajagopalan and Tien (AIChE J. 1976,
22, 523-533) model. Both appeared to work equally well
at predicting mean bacteria breakthrough using a constant
mean bacteria diameter for this set of field conditions.
Simulations using a distribution of bacterial cell diameters
available from original field notes yielded a slight
improvement in the model and data agreement compared
to simulations using an average bacterial diameter. The
stochastic approach based on estimates of local-
scale parameters for the bacteria-transport process
reasonably captured the mean bacteria transport behavior

and calculated an envelope of uncertainty that bracketed
the observations in most simulation cases.

1. Introduction
Ongoing reports of waterborne disease outbreaks (3) and
the presence of pathogens in groundwater (e.g., refs 4-10)
underscore the need for advancement in our ability to predict
subsurface pathogen transport. Such quantification is nec-
essary for risk assessment and for development of pathogen
total maximum daily loads (TMDLs) (11). Implementation
of mechanistic mathematical models is one approach, but
application is complicated by site-specific geologic hetero-
geneity and uncertainties, including parametrization of
nonideal microbial transport properties in aquifer materials.
Over the past 25 years, controlled laboratory studies involving
homogeneous media have resulted in significant progress
toward quantifying the roles of microbial (size, shape, surface
chemistry), mineral, and fluid properties on the transport of
microorganisms through the terrestrial subsurface (see ref
12 and reviews in refs 13 and 14). Gains have also been made
in the area of field-scale modeling by coupling porous-media
transport models with a realistic representation of the
microbial attachment process (e.g., refs 15 and 16). Less
progress has been made in coupling the known nonidealities
of microbial transport with a realistic representation of aquifer
heterogeneity to quantify the effects of heterogeneity on the
transport process (e.g., refs 17-21). However, the latter type
of work is needed to produce models that better capture the
field-scale reality of this complex process.

Since earlier attempts to couple colloid filtration with the
advection-dispersion equation to model the movement of
indigenous, uncultured bacteria in a controlled field-scale
tracer tests (e.g., ref 15), considerable advances have been
made in (1) statistically quantifying physical aquifer het-
erogeneity; (2) capturing heterogeneity using numerical
methods incorporating finely gridded systems and grid-free
transport algorithms; (3) refining the relationship between
colloid filtration (sorptive removal) and physical heterogene-
ity, and (4) parametrizing the colloid filtration process. The
purpose of this paper is to utilize improvements in these
four areas to revisit the data interpretation from the 1991
paper by Harvey and Garabedian. We make use of informa-
tion from a site-specific geostatistical characterization of
physical heterogeneity (hydraulic conductivity), particle-
tracking numerical techniques that facilitate modeling on a
fine grid and incorporation of input bacterial cell-size
distributions, and postulated correlations (Rehmann et al.
(17)) between colloid filtration and lnK. We also utilize recent
improvements in estimations of the collector efficiency
parameter in colloid filtration by Tufenkji and Elimelech (1),
as compared to the more commonly used Rajagopalan and
Tien (2) model. This paper evaluates how these improvements
affect data interpretation and highlights areas where further
work is needed.

2. Materials and Methods
2.1. Field Experiment. In October 1987, a short-scale (6.8 m)
natural-gradient injection test involving indigenous bacteria
fluorescently labeled with the fluorochrome 4,6-diamidino-
2-phenylindole (DAPI) was conducted in the sandy aquifer
at the U.S. Geological Survey Toxic Substances Hydrology
research site at Cape Cod, Massachusetts. Details of the
conditions of the injection test are provided in Harvey and
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Garabedian (15); information on the site hydrogeology is
provided in LeBlanc et al. (22). In brief, a 90 L volume of
bromide solution (150 mg/L) and stained bacteria was
injected at a rate of 0.85 L/m simultaneously at depths of 8.5
and 9.1 m below land surface in the saturated zone.
Breakthrough was subsequently measured for the afore-
mentioned depths at 6.8 m downgradient from point of
injection. At about the same time the tracer test was being
conducted, an extensive characterization of the nature and
distribution of the hydraulic conductivity properties of aquifer
sediments was being carried out at a nearby plot by means
of borehole flow meter measurements (23). The location of
the two tests relative to one another is shown in plan view
Figure 1. The vertical position of the injection points relative
to the vertical depth over which the aquifer geostatistical
information was obtained is shown in Figure 2.

Two additional data sets that were recorded during the
1987 tracer test, but not previously reported, include (1)
breakthrough observations at two elevations at multilevel
sampler M7, 5 m downgradient and about 1 m east of the
centerline between the injection point and observation well
M1, and (2) the histogram of the distribution of the sizes of
the injected bacteria (Figure 3).

2.2. Governing Equations. The governing equation for
local-scale advection, dispersion, and reversible interactions

with grain surfaces for resting-cell bacteria in porous media
is given by

For attached bacteria, the mass balance equation is given by

where Cj is the mass fraction (dimensionless) of bacteria in
solution of species or attribute j, Sj is the mass fraction
(dimensionless) of attached bacteria of attribute j, kj

att and
kj

det are first-order rate constants for physical/chemical
attachment (sorption) and detachment of species j, F and Fb

are densities of the fluid and bulk porous medium [M/L3],
D is the hydrodynamic dispersion tensor [L2/T], v is the
average seepage velocity [L/t], and n is effective porosity
(dimensionless). Growth and death terms are not included
in eqs 1 and 2 because abundances of DAPI-stained bacteria
in a control suspension and in tracer test samples were stable
during a 30-day period following collection (15). Although
significant advances have been made in understanding the
effect of bacterial chemotaxis at the pore scale (24), much
about the macroscale significance of chemotaxis for bacteria
is still poorly understood (25). However, DAPI, which is known

FIGURE 1. Location of the 1987 bacteria injection test (15) in relation to the sample plot where characterization of the geostatistical
distribution of aquifer properties (23) was carried out and to the trajectory of the bromide cloud created during an earlier large-scale
conservative tracer study (22). This figure adapted from Hess et al. (ref 23) is reprinted with permission of American Geophysical Union.
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to hamper bacterial activity (26), has recently been shown
to inhibit chemotactic activity in groundwater bacteria (27).
Also, the uncultured bacteria were stored in nutrient-depleted
water prior to injection to lessen the formation of temporal
gradients in dissolved organic carbon. Consequently, the

effects of chemotaxis are assumed to be minor and, therefore,
are not included in eqs 1 and 2.

Parametrization of kj
att for subsurface microbial transport

in aquifers using colloid filtration theory developed for ideal
porous media was first proposed by Harvey and Garabedian
(15) and has been utilized by a number of other researchers
(e.g., Rehmann et al., (17); Schijven et al. (16)). This model
is popular because it is based on fundamental thermody-
namic principles, and because most of its parameters are
published constants or can be measured. A widely used model
for colloid filtration is that of Rajagopalan and Tien (R&T)
(2), as modified by Martin et al. (28) and clarified by Logan
et al. (29), which is given as

where v is the groundwater velocity magnitude [L/T], η is the
collision frequency, or single collector efficiency (dimen-
sionless), Rc is the collision efficiency factor, or probability
that collision will result in attachment (dimensionless) and
d10 is the sieve size [m] for which 90% of grains of the porous
medium are retained. The d10 is used as the representative
grain diameter in heterogeneous media, based on the work
of Martin et al. (28).

R&T estimated the collision frequency to be composed of
additive factors influenced by Brownian motion, interception
of the colloids by grains, and gravitational settling:

where

and H is the Hamaker constant [M/L2T2], Bz is the Boltzmann
constant [M/L2T2°K], T is temperature (°K), µ is dynamic
viscosity [M/LT], dp is colloid diameter [L], F is the fluid density
[M/L3], and Fp, the buoyant density of the colloidal particle
[M/L3]. A recent alternative formulation of collision frequency
has been proposed by Tufenkji and Elimelech (T&E) (1), which
the authors have shown to have an improved fit to lab data
compared to the R&T model:

FIGURE 2. (a) Location of injection and observation points for tracer
test. Vertical extent of nearby (23) flowmeter measurements used
to calculate hydraulic conductivity is shown in gray. Fast and slow
zones described by Harvey and Garabedian (15) are depicted. (b)
Plan view of model domain with injection and observation wells
identified. Note that Well M07 is located 0.31 m off-axis from Wells
M02, M02 and the hydraulic gradient.

FIGURE 3. Distribution of diameters of indigenous bacteria injected
in the 1987 tracer test.
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where

Physical interpretations of the dimensionless parameters in
eqs 4 and 5 can be found in Table 1 of Tufenkji and Elimelech
(1).

2.3. Effect of Hydraulic Conductivity Variability on
Microbial Transport. Hess et al. (23) have shown that the
three-dimensional distribution of the natural-logarithm of
hydraulic conductivity (lnK) of the aquifer material at the
Cape Cod site can be represented as a stationary, correlated
random field on the scale of tens of meters. Of interest is
how this spatial variability in lnK couples with and affects
the colloid transport process as represented by eqs 1 and 2.
It is well-known that lnK affects the fluid velocity (v) directly
through Darcy’s law. For the colloidal transport case, there
is additional nonlinear dependence on lnK through the
expression for attachment. From eq 3 it can be seen that

Dependence on v is direct as well as through the expression
for η(v) given by eqs 4 or 5. kj

att is also dependent on lnK in
η through known correlations between d10 and lnK, and
through postulated relationships between Rc and lnK. To
obtain a d10-lnK relationship, we inverted the Hazen (30)
formula

where K and d10 are in m/sec and m, respectively. Good
agreement has been shown between local-scale K calculated
using the Hazen formula from grain-size analysis and K
measured on the same sample using a constant-head
permeameter (31), for the Cape Cod data.

Correlations of the transport parameters Rc, and kj
det with

lnK have been postulated by Rehmann et al. (17) to be

where ai and bi are constants, and δi represents the random
portions of Rc or kj

det that are not correlated with lnK (32, 33).
The general forms specified by eqs 8 and 9 allow positive (bi

> 0), negative (bi < 0), or zero (bi ) 0) correlation with the
lnK field. The uncorrelated portion δi accounts for spatial
variability in conditions not related to the hydraulic con-
ductivity of the porous medium (e.g., solution chemistry).
Numerical values for ai, bi, and δi must be determined
experimentally. An example data set showing the correlation
of Rc and lnK is given by Ren et al. (34).

To prevent Rc from going to zero for large values of lnK,
we have found that an alternative formula for eq 8 specified
as

is computationally advantageous. Figure 4 shows both a linear
fit (eq 8) and an exponential fit (eq 10) to data taken from
Ren et al. (34) and Dong et al. (35) (as expanded upon in
Mailloux et al. Figure 10c, ref 36) covering a wide range of
lnK values. Values for Rc greater than one resulting from very
small values of lnK using these correlations were not allowed
and instead set equal to one.

2.4. Numerical Solution Using a Particle Tracking
Approach. A Lagrangian particle-tracking approach was used
to simulate both bromide and bacterial transport. Particle-
tracking methods have been widely applied in subsurface
transport problems (e.g., refs 37-40). This approach trans-
forms transport eqs 1 and 2 into a set of discrete particles
such that each particle represents a small portion of the total
mass of solute. A modification to the particle-tracking
approach for a conservative tracer was used to represent the
attached bacterial phase and the attachment/detachment
kinetics presented in Section 2.2. This modification represents

TABLE 1. Input Data for Particle Simulations

parameter value reference

Fb 1720 kg/m3 Harvey and Garabedian (15)
r 999 kg/m3 Harvey and Garabedian (15)
Fp 1010 kg/m3 Harvey et al. (55)
n 0.39 LeBlanc et al. (22)
H 3 × 10-21 kg m2/s2 Tufenkji and Elimelech (1)
Bz 1.38 × 10 -23 kg-m2/s2K
T 288 °K Harvey and Garabedian (15)
µ 1.14 × 10-3 kg/m-sec Harvey and Garabedian (15)
dp (average) 6.0 × 10-7 m Harvey and Garabedian (15)
J (hydraulic gradient) 0.0015 LeBlanc et al. (22)
Kh at 9.1 m BLS1 78 m/d calculated from reported v, n, assumed J
Kh (fast zone) at 8.5 m BLSa 77 m/d calculated from reported v, n, assumed J
Kh (slow zone) at 8.5 m BLSa 58 m/d calculated from reported v, n, assumed J
RL, RT 0.0 m taken as zero in simulations, since effect of finite value

was not discernible via test runs.
a3 3.4 × 10-10 from exponential fit to local-scale Rc -lnK data (Figure 4)
b3 2.1 from exponential fit to local-scale Rc -lnK data (Figure 4)
δ3 0
a2 9.46 10 -7 sec -1 from linear regression of detachment data in Schijven et al. (16)
b2 1.03 10-7 sec-1 from linear regression of detachment data in Schijven et al. (16)
δ2 0
σlnK

2 0.24 Hess et al. (23)
λx,y 3.6 m Hess et al. (23)
λz 0.19 m Hess et al. (23)

a This parameter is used to assign initial values in parameter estimation procedure.
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attachment and detachment rates as particle probability
functions. For a given particle time step, an attachment or
detachment probability is calculated and a random function
is used to determine whether a given particle attaches to the
soil matrix. This approach is similar to that introduced by
Valocchi and Quinodoz (41) and used by Michalak and
Kitanidis (42) for modeling kinetic chemical sorption, has
been used to model matrix diffusion (e.g., Liu et al. (43)) and
for microbial transport (Zhang et al. (44); Scheibe and Wood
(45)). For large problems with heterogeneous physical
parameters, this approach of representing attachment-
detachment interactions as particle probabilities facilitates
rapid solution of eqs 1 and 2 with mass conservation and no
numerical dispersion. Also, each particle is moved according
to a locally calculated, optimal time step, and may be split
into two particles of equal mass if a single particle occupies
a computational cell. These techniques further improve
efficiency and accuracy, particularly for low concentrations
(46) (please see the Supporting Information).

2.5. Generation of Hydraulic Conductivity Random
Field. The two alluvial layers identified in Harvey and
Garabedian (15) were conceptualized as having small-scale
hydraulic conductivity (K) heterogeneity following a cor-
related, Gaussian random field, each with independent
statistical parameters. The lnK variance (σlnK

2 ) and cor-
relation scales (λx ) λy, λz) were taken as those reported by
Hess et al. (23) from a nearby plot. Information reported by
Harvey and Garabedian (15) was used to estimate initial
values of the geometric mean K values for the two layers
(Table 1). Using these statistical parameters, the small-scale
variability in hydraulic conductivity of each layer was
generated numerically using the turning bands approach of
Tompson et al. (47). Because measurements made by Hess
et al. (23) were not located directly in the Harvey and
Garabedian (15) study plot, unconditional simulations were
utilized.

Adjustment of the initial hydraulic conductivity field to
obtain the best fit of simulated to measured (14) bromide
transport was carried out as follows. A flow model, 17.0 m
× 10.2 m × 3.8 m in the x, y, and z dimensions, respectively,
was constructed with a 0.34 and 0.038 m lateral and vertical
spatial discretization (dx ) dy, dz), respectively, creating 50
× 30 × 100 finite difference cells (nx, ny, and nz). The finite-

difference flow code ParFlow (48-50) was run for 100
realizations of the hydraulic conductivity field. The model
was simulated as steady-state flow and constructed with
constant head boundaries on the X0 and Xmax faces and “no-
flow” conditions on all others to provide the observed gradient
listed in Table 1. A bromide tracer was introduced as a pulse
source of particles in a 0.765 m × 0.34 m × 1 m volume
centered on M02 (6.8 m upgradient of M01) to achieve
approximately the same injection conditions as the Harvey
and Garabedian (15) field experiment. Figure 2 shows
schematic details of the simulation domain. The average of
the breakthrough curves generated by forward simulation
over the 100 geostatistical realizations was compared to
breakthrough field data for all four locations (wells M01 and
M07, two upper, two lower). The parameter estimation code,
PEST (51) was used to adjust the geometric mean K and lnK
variance for the two layers using the difference between
calculated average (over all 100 realizations) and observed
bromide concentrations for all four monitoring locations as
the objective function. The correlation scales were not
adjusted. This process was run iteratively until the objective
functions converged. At this point, a best fit to the bromide
data was achieved and the lnK statistical parameters used to
generate the optimal set of 100 realizations of the lnK field
and the resulting 100 lnK realizations and flow fields were
saved and used for the bacteria simulations. Table 2 provides
the numerical parameters used in the flow and transport
models.

2.6. Bacteria Transport Simulations. Bacteria injection
and downgradient transport was simulated using the flow
fields resulting from the 100 hydraulic conductivity realiza-
tions generated by the bromide calibration. Bacteria transport
was modeled using several options: (1) the R&T vs T&E
formulations for attachment; (2) average vs particle size
distribution for the bacteria sizes, and (3) constant vs variable
detachment rates. This resulted in seven different bacterial
transport cases, each of which was run over all 100 realizations
of hydraulic conductivity. Although the community of
unattached bacteria comprising the injectate included many
rod-shaped cells, this model assumes uniform spherical
morphology. In all bacterial transport runs, η was spatially
variable, with grain diameter related to lnK (using the Hazen
formula, eq 7), the velocity taken to be the magnitude of the
local cell velocities, and Rc related to lnK using eq 10 as
described in Section 2.3. This overall approach for relating
filtration parameters to hydraulic conductivity is similar to

FIGURE 4. rc vs lnK data from Ren et al. (2000) and Dong et al. (2002)
(as supplemented by Mailloux et al. (ref 36, Figure 10c) with linear
and exponential fits to the data. The exponential fit was used in
the model runs in this paper.

TABLE 2. Input and Final Calibration Parameters for Flow and
Particle Models

parameter value unit

dx 0.34 m
dy 0.34 m
dz 0.038 m
nx 50
ny 30
nz 100
Kg_uppera 83 m/d
σlnk

2 _uppera 0.31
Kg_lower1 87.5 m/d
σlnK

2 _lower1 0.22
λx,y 3.60 m
λz 0.19 m
upper/lower domain split 8.91 m bls
domain size (x,y,z) 17.0 × 10.2 × 3.8 m
bottom of domain 10.41 m bls
upper zone thickness 2.3 m
lower zone thickness 1.5 m
number of initial particles 75 000
maximum number of particles
allowed after splitting 250 000

a Final calibration values.
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that presented in Maxwell et al. (20). For each of the
aforementioned seven cases, average bacteria breakthrough
curves generated by simulation over the 100 geostatistical
realizations were compared to field data for the upper and
lower sampled ports of wells M01 and M07. Table 1 provides
the physical input data used in the bacteria transport
simulations. For all simulations, estimated values of local
dispersivity (0.0005 m) had little effect compared to mixing
due to heterogeneity, and therefore all runs were carried out
with this parameter set equal to zero for computational
efficiency.

3. Results
The results of the bromide calibration are given in Figure 5.
The model results are depicted as the arithmetic mean over
100 realizations (heavy solid line) with the mean plus 1
standard deviation (over 100 realizations), plotted as a thin
dashed line. The mean minus 1 standard deviation was zero
for all tracer results. Table 2 lists the physical parameters
that characterize the Gaussian random field resulting from
the bromide calibration.

Plotted in Figure 6 are the observed and simulated
bacterial transport concentrations at the upper and lower
ports for well M01 and the lower port for well M07. During
the original field experiment, bromide concentrations for
the upper port of well M07 were very low and corresponding
bacteria abundances could not be determined accurately
because they were close to or below the detection limit. The
corresponding model runs predicted very low bacterial
concentrations (peak C/C0 < 5 × 10-3 for all simulations)
and are therefore not plotted. The simulations in Figure 6
depict the attachment correlations parametrized using either
the T&E expression (Figure 6a, b, c) or the R&T equation
(Figure 6d, e, f) for an averaged bacterial size of 0.63 um. As
for the bromide runs, the bacteria simulations are also plotted
as the arithmetic mean (solid line) and (1 standard deviation

(dashed line) calculated over 100 realizations of the hydraulic
conductivity random field. A constant detachment rate of
kj

det ) 0.02 d-1 was used for all simulations.
Figure 7 shows the observed and simulated bacterial

transport concentrations again use the T&E (Figure 7a, b, c)
and R&T Figure 7d, e, f) expressions for bacterial attachment
but instead of a constant bacteria diameter, the distribution
of 10 bacteria diameters shown in Figure 3 was utilized. These
simulations are also plotted as the arithmetic mean (solid
line) and (1 standard deviation (dashed line) calculated over
100 realizations of the hydraulic conductivity random field.
Again a constant detachment rate of kj

det ) 0.02 d-1 was used
for all simulations.

Figure 8 shows plots of simulations versus observations
at all wells for the bromide and bacteria cases presented in
Figures 5-7, with a linear regression through the data points
and a 1:1 line (which would be a perfect fit) superimposed
for comparison.

4. Discussion
4.1. Interpretation of Model Results. Figure 5 plots show a
remarkably good agreement between observed and mean
simulated peak bromide concentrations at the M01 upper
and lower wells and the M07 lower well. Although simulation
of peak bromide concentration at the M07 upper well is not
as good as the three otherssit is a factor of 4 higher than the
observationsthe simulated breakthrough curve does capture
the approximately correct width of the observed bromide
breakthrough at this location, and falls within the (1 standard
deviation of the mean simulation. This is most likely due to
a local heterogeneous feature of the hydraulic conductivity
present in the real system that is not captured by the model.
For all wells other than M01 lower, the mean model first
appearance of bromide precedes the observed data, indicat-
ing some error in the modeled lnK field compared to the
in-situ field. Nonetheless, the overall good agreement is borne

FIGURE 5. Plot of observed (symbols) and simulated (lines) bromide concentrations (normalized by initial concentration, C0) with time
for both wells at both monitoring ports for the calibrated ensemble of realizations. Average simulated bromide plotted as a solid line with
+1 standard deviation plotted as a dashed line.
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out by the plot in Figure 8a, the slope of the best fit line
through the observation versus simulation of all points at all
wells is 0.96, with an R2 of 0.88.

All of the simulated mean bromide concentrations fall
within the envelope encompassed by (1 model standard
deviation. While this envelope may visually appear to be
quite large for all wells, it should be recognized that this
is due to the nature of the simulations, which were
unconditional. However, if K data were available within the
model domain on which the random fields could be
conditioned, the standard deviation would be tighter. Given
the overall good match of the simulated mean bromide to
the breakthrough data, we have confidence that the het-
erogeneity of the test site is fairly well represented by the
model results. We also point out that by using the numerical
technique, where the heterogeneity is specified explicitly,
we are not restricted from modeling transport over small
distances, whereas this would be a problem using a small-
perturbation stochastic analytical approach (e.g., ref 17)

necessitating transport over many correlation scales of a
heterogeneous K field in order to satisfy ergodicity require-
ments.

Figure 6 shows the simulations of resting cell bacteria
assuming a mean, constant bacteria diameter as input, for
both the T&E and R&T models. All local-scale bacteria
transport parameters were approximated from literature
values. There was no parameter fitting involved and the same
100 lnK realizations and flow fields from the bromide
calibrations were used. For all wells, simulated mean bacteria
concentrations agree with the observations, and generally
the observed data fall within (1 standard deviation of the
simulated mean. The simulated first arrival times of the
bacteria at the M01 upper and M07 lower wells precede the
observed first arrivals by several days, which is to be expected
given the bromide results and bacteria detection limit
limitations. Both the R&T and T&E colloid transport models
appear to do an equal job using the constant bacteria
diameter. This is confirmed by the plots in Figure 8b and c,

FIGURE 6. Plot of observed (symbols) and simulated (lines) bacterial concentrations (normalized by initial concentration, C0) with time
(days) for sampling ports M01 upper, M01 lower, and M07 lower (expanded scale). The T&E (left, A-C) and R&T (right, D-F) attachment
formulation are utilized with an averaged particle size. Average simulated bacterial concentrations plotted as a solid line with ( 1 standard
deviation plotted as a dashed line.
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the slopes of the linear regressions to the simulated versus
observed data are 0.86 and 1.37 for the R&T and T&E cases,
respectively, compared to a perfect fit of 1.0. Both models
consistently overpredict the tailing behavior compared to
the observations. Observed concentrations past 25 days do
not fall within (1 standard deviation of the simulated mean
for well M01 upper or lower port.

Incorporation of the distribution of bacteria diameters in
the numerical model, as illustrated by Figure 7, yields a slight
improvement in model and data agreement, compared to
Figure 6, most noticeably in the breakthrough after 25 days.
In this case, the peak simulated breakthrough values of mean
bacteria concentration are lower than for the constant-mean
bacteria-diameter case and the widths of the breakthrough
curves are also in better agreement. The slopes of the linear
regressions in Figure 8 show about a 10% improvement for
the T&E formulation (1.37 in Figure 8c compared to 1.24 in
Figure 8e) while linear regression slopes do not change as
much in the R&T formulation. The bacteria diameter affects

the transport process in the expression for single collector
efficiency (η), where the relative effects of diffusion, inter-
ception due to van der Waals forces, and gravity are
incorporated into the local-scale expression as given by eqs
4 or 5. Figure 7 also indicates that incorporation of the new
T&E model into the expression for local-scale single collector
efficiency results in greater bacteria breakthrough than the
R&T model. The overall difference in these two models
corresponds to the lower single collector efficiency (η) for
the bacterial size range predicted by the T&E formulation.
This is also shown by Figure 8d and e, the slopes of the linear
regression of the simulated versus observed data are 0.79 for
the R&T and 1.24 for the T&E models. Figures 2 and 3 in
Tufenkji and Elimelech (1) compare the single collector
efficiencies calculated for a range of particle diameters for
the R&T and T&E formulations. The range of particle
diameters simulated in this current study corresponds to
the region of largest difference between the two models.

FIGURE 7. Plot of observed (symbols) and simulated (lines) bacterial concentrations (normalized by initial concentration, C0) with time
for (days) sampling ports M01 upper, M01 lower, and M07 lower (expanded scale). The T&E (left, A-C) and R&T (right, D-F) attachment
formulation are utilized with the particle size distribution given in Figure 3. Average simulated bacterial concentrations plotted as a solid
line with (1 standard deviation plotted as a dashed line.
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Figures 6 and 7 show model results utilizing a constant
detachment rate. The model was also run for the T&E case
using a detachment rate correlated to hydraulic conductivity,
thereby rendering a spatially variable detachment rate. These
model runs show that spatial variability of detachment had
little effect on breakthrough compared to the constant mean
detachment case, i.e., the model results appear to be virtually
identical to Figure 7 and, therefore, are not shown. Figure
8f shows the results of the simulated vs observed data for
this case for all wells and it can be seen that it is virtually
identical to Figure 8e. The tailing behavior of the break-
through curves was not captured well either using a constant
or spatially variable detachment rate; however, other factors
not considered in this approach (e.g., chemical heterogeneity,
discussed below) might contribute to this behavior.

4.2. Significance and Implications. We have reinterpreted
breakthrough data for bromide and resting-cell bacteria
injection tests conducted in 1987 and reported in 1991 (15)
using computational tools and theoretical frameworks that
were, for the most part, unavailable during the original study
and analysis. The purpose of conducting the simulations
and analysis of the data was to illustrate the applications of
these advancements. This work may have implications for
those intending to use the Harvey and Garabedian model in
engineering applications (e.g., ref 52).

Our analysis differs from that reported in 1991 in the
following aspects. First, we utilized a fully three-dimensional
transport model of the tracer tests, to better match the field
conditions of the pulse injection in a three-dimensional flow
field, whereas a one-dimensional analysis was previously
employed. Second, we explicitly incorporated information
on the physical heterogeneity of the hydraulic conductivity
field as conditioned by information on observations of
conservative tracer breakthrough. Use of the methods in this

paper is, therefore, predicated upon information on the
physical heterogeneity of the field site, i.e., the hydraulic
conductivity distribution, being available. This can be an
expensive undertaking and is still an active area of research
in the field of hydrogeology (e.g. ref 53, 54). Although modeled
as stationary (constant mean and variance), stationarity of
the lnK field is not required for the numerical methods used
here. However, using approaches that rely on this assumption
(e.g. ref 17) could have limitations in other applications. This
method is also not restricted in applications to near-field
problems where it would be expected that macroscopic
behavior may be non-Fickian at such scales. Also, we utilized
unconditional simulations because K data were not available
in the test plot on which to condition the simulations;
availability of these data would have significantly reduced
the standard deviation around the mean for the simulated
breakthrough curves.

Third, we were successful at simulating bacteria transport
using a stochastic numerical approach with no parameter
fitting of the bacteria transport and filtration parameters.
After calibrating 100 unconditional K random field realiza-
tions based on optimization of the mean and standard
deviation of the lnK field to provide a best fit of the bromide
breakthrough curves, we were able to show good simulation
of bacteria transport/filtration where local scale parameters
are spatially variable. Prediction of bacteria breakthrough
was improved in the T&E formulation by replacing averaged
bacterial size with a full bacterial size distributions. The latter
modification is easily incorporated using the particle-tracking
approach because particles can be assigned variable proper-
ties such as diameter. Apparently, the dependence of the
single collector efficiency on bacteria diameter is significant
even for field applications because the sensitivity of the
relative importance of diffusion, interception, and settling

FIGURE 8. Plot of observed versus simulated averaged (arithmetic mean over all 100 realizations of hydraulic conductivity) concentrations
for bromide and bacteria for all wells with 1 to 1 line (dotted) and linear fit noted on figure, for (a) bromide for all four monitoring locations;
bacteria for the three nonzero monitoring locations for (b) constant diameter and R&T expression for η; (c) constant diameter with the
T&E expression for η; (d) distribution of diameters and R&T expression for η; (e) distribution of diameters and T&E expression for η; and
(f) distribution of diameters and T&E expression for η, with variable detachment.
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on bacteria diameter (eqs 4 or 5).
Fourth, the stochastic framework utilized here, as pos-

tulated by Rehmann et al. (17), is dependent upon the
assumption of correlation of the colloid filtration parameters
and detachment with the spatial variability of hydraulic
conductivity, and the availability of data to parametrize this
correlation. However, such experimental data are scarce. This
type of fairly site-specific correlation data can be generated
by fairly simple laboratory experiments (see, e.g., ref 34) and
is needed for determining the range of correlation parameters
physically feasible. As demonstrated by hypothetical simula-
tions in Maxwell et al. (20), the model results are quite
sensitive to values of the correlation parameters. Improve-
ments can be made as published data become available on
correlations between colloid transport parameters and lnK
for the sedimentary materials from this field site.
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