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Abstract—Calcite crystal growth experiments were undertaken to test a recently proposed model that relates
crystal growth mechanisms to the shapes of crystal size distributions '(CSDs). According to this approach,
CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth méchanism
having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from
decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-
state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does .
not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This-
mechanism is attributed to supply-controlled growth, :

All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation
conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added
stepwise to the surface of solutions that were supersaturated with respect to calcite (initial Q = 20, where () =
'] represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognor-
mal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, ..
to similarly supersaturated solutions (initial ) = 22 to 41), thereby leading to a single nucleation event
followed by surface-controlled growth: The Ostwald CSD resulted when concentrated reactants were rapidly
mixed, leading initially to high levels of supersaturation (£} >100), and to the formation and subsequent
dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. o

The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size
range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that
a supply-controlled growth mechanism was established and maintained during the constant-composition
experiments. CSDs having shapes intermediate between lognormal and Ostwald also were generated by
varying the initial levels of supersaturation (initial ) = 28.2 to 69.2) in rapidly mixed solutions. .

Lognormal CSDs were observed for natural calcite crystals that are found in septarian concretions occurring
in southeastern Colorado. Based on the model described above, these CSDs indicate initial growth by surface
control, followed by supply-controlled growth, Thus, CSDs may be used to deduce crystal growth mechanisms
from which geologic conditions early in the growth history of a mineral can be inferred. Conversely, CSD
shape can be predicted during industrial crystallization by applying the appropriate conditions for a particular
growth mechanism. Copyright © 2000 Elsevier Science Ltd

dustrial processes involving circulating water for cooling
(Davis et al., 1995), and the particle size distribution of CaCO,
is an important parameter in the agricultural feed and paper
coating industries. : o -
Numerous studies have investigated factors governing the

1. INTRODUCTION

It is of practical and theoretical importance to understand the
factors that influence mechanisms of calcite crystal growth.
These growth mechanisms can be interpreted by analyzing

crystal cize distributions (CSDs; Eberl et al., 1998). Size dis-
tributions can influence carbonate reactivity, which plays an
importaat role in the carbon cycle (Berner and Berner, 1996;
Milliman et al., 1999; Arvidson and Mackenzie, 1999) and in
buffering water chemistry in hydrologic systems (Drever,
1997). For example, carbonate reactivity can control pH in
surface waters (Drever, 1997) with resulting impact on mine
drainage (Carrucio and Geidel, 1978). In groundwater systems,
crystallization of CaCO, can influence storage, transmissivity,
and water quality (Winter et al., 1995) of aquifers. Dissolution
and recrystallization of CaCO, are important to the diagenesis
of limestone and other sedimentary rocks (Ridgley, 1986).
Chemical engineers are concemned with CaCO, scaling in in-
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growth of calcite crystals in a variety of synthetic systems.
Many of these factors are relevant to industrial crystallization
or environmental considerations (Kitano, 1962; Reddy and
Nancollas, 1976; House, 1981; Kazmierczak et al., 1982;

‘Busenberg and Plummer, 1986; Reddy, 1986; Kotaki.and -

Tsuge, 1990;-:'Isopescu et al,, 1996; Spanos and Koutsoukos,

1998). Whereas such studies have elucidated chemical and

thermodynamic aspects governing the crystallization of calcite
from aqueous media, none has been able to provide a theoret-
ical basis from which the shapes of calcite CSDs can be
predicted accurately, A recent approach presented by Eberl et
al. (1998), and a computer program for simulating crystal
growth that is based on this approach (Galoper, an acronym for
Growth According to the Law of Proportionate Effect and by
Ripening), can be used to interpret experimental results for
CSDs. This program, written in Microsoft Excel macros, sim-
ulates the development of CSD shapes for a variety of crystal
growth mechanisms and nucleation conditions.
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The approach followed by Eberl et al. (1998) indicates that
CSDs have three basic shapes, as shown in Figure 1: (1)
asymptotic, in which the frequencies of the sizes are greatest in

the smallest size -classes, and exponentially decrease as size -

increases; (2) lognormal, in which the logarithms of the crystal
sizes are normally distributed, but which has a positive skew
toward larger sizes if crystal sizes, rather than their logarithms,
are plotted; and (3) a universal, steady-state shape! which has
a skew toward smaller sizes (i.e., negative. skew). This ap-
proach is in contrast to earlier models that are based on indus-
trial crystallization processes- (Randolph.and Larson, 1988;
Marsh, 1988; Cashman and Marsh, 1988; Cashman and Ferry,
1988; Marsh, 1998) which employ a population balance
method that often fails to model the shapes of CSDs (Larson et
al., 1985; Kerrick et al., 1991).

According to the approach mentioned above, the three basic
CSD shapes can be related to four crystal growth processes: (1)
constant-rate nucleation accompanied by surface-controlied
growth, thereby generating an asymptotic CSD; (2) decaying

nucleation rate accompanied by surface-controlled growth, .

thereby generating a lognormal CSD; (3) Ostwald ripening,
during which larger crystals grow at the expense of smaller,
less stable crystals, thereby generating the negatively skewed
CSD; and (4) supply- (transport-) controlled growth, during
which growth rates are limited by the activity of reactants at the
mineral surface..TWO other mechanisms described previously
(Bberl et al., 1998), random ripening and crystal agglomeration,
are not considered here.

In the present study, a series of calcite nucleation and growth
experiments were undertaken to test this approach by relating

experimental conditions and crystal growth mechanisms to the

shapes of CSDs. The goal was to experimentally reproduce the
three fundamental CSD shapes that are simulated by the Galo-
" per program, and to elucidate the chemical conditions required
for their generation in a mineral system of broad scientific
interest.

2. CRYSTAL GROWTH MECHANISMS

Asymptotic and lognormal CSDs can be generated mathe- -

matically by the Law of Proportionate Effect (LPE; Kapteyn,
1903; Gibrat, 1930). Briefly, this law states that the rate of
growth is proportional to linear size times a random number,
thereby making growth rate size-dependent. LPE, taken in this
study to be a fundamental crystal growth law, leads to size-
dependent growth in two regimes.

First, unrestricted size-dependent growth may occur in sys-
tems far from equilibrium. This type of growth is termed
“surface-controlled” because its rate is limited only by how fast

the crystals can grow given an essentially infinite supply of

reactants, and not by the rate of reactant supply to the crystal
surface. Such growth results in an exponential increase in mean

This shape, attributed to Ostwald ripening (described later), is termed
“universal” because it is approached during the ripening process, re-
gardless of the initial shape of the CSD, provided that ripening pro-
ceeds far enough. It is called a “steady-state” shape because its shape
is constant, regardless of the mean size, when plotted on reduced axes
{i.e., size/mean size vs. frequency/maximum frequency). CSDs that
have the same steady-state shape have the same loganth.tmc-based size
variance (82).
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Fig. 1. Three basic shapes of CSDs according to the approach of
Eber] et al. (1998).
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Table 1. Summary of experimental methods and conditions for calcite crystal growth experiments.

Initial concentration (M)

Sample CSD Initial vol. Excess (mL) Start Final Calculated
no. shapes (mL) CaCl, NaHCO, Na,CO; KNO; NaCl CaCl, + KOH pH* pH Duration initial { Final O
CCNG-2  asymptotic 150 0.0020  0.002 0.093 15 " 85 85 100min 20 22.3
CCNG-30 asymptotic 300 0.0020  0.002 0.093 30 85 8.4 195min 20 172
CCNG-35 lognormal 300 0.0020  0.002 0.093 30 8.8 8.7 140min 30 24
CCNG-40 lognormal 300 .0.0020 0.002 0.093 67 - 87 84 30min® 40 19
CCNG-42 lognormal 300 0.0020  0.002 0.093 45 87 85  7hours® 32 21
CCNG-43 lognormal 300 0.0020  0.002 0.093 33 8.6 8.5 230min® 22 18
CCNG-44 lognormal 300 0.0020 0.002 ° 0.093 32 86 85 5hours 22 17
CCNG-45 lognormal 300 . 0.0020 0.002 0.093 64 88 85 225min* 41 26
CCNG-9 Ostwald 100 0.0265  0.002 0.0244 0.046 10.7 100 ~1min 3090° b
CCNG-13 Ostwald - 100 - 0.0265 0.002 0.0244 - 0.046 107 84 l4hours 3090° 42
CCNG-19 Ostwald 400 0.0050 .0.0050 0.50 10.5 100 40min 106 67
CCNG-20 Ostwald 200 0.0265 0.002 0.0244 0.046 105 8.1 90.5hours  3090° 2
CCP-4* - Ostwald 400 00020 0.002 0.093 85 85 45hours - 5 5
7-26 transitional 400 0.0025 - 0.0025 0.025 025 103 103 53 min 282 b
7-12 " transitional - 400 0.0038 0.0050 005 0.0 105 105 50min . 53.7 b
7-20 transitional 400 0.0050 0.0050 0.05- 0.50 . 103 103 49 min 65.2 b
CCNG-25 bimodal ~ 0.0050 0.005 0.50 9.9 9.7 105 min 51.4 10.5

%In lognormal experiments, the time listed is the time from hlghest pH to final sampling.

® Ca?* concentration data not available for calculation.

¢ Actual value of omega does not exceed ~100 due to short induction time.

d Constant composition experiment using CCNG-19 crystals as seed.

crystal size and a linear increase in crystal size variance (7,
defined in “Bxperimental Methods”) with time. Each individual
crystal’s growth rate is governed by its size (X;) and a random
variable (g;) that generally varies between zero and one. The
range of € is an indication of system variability, and, in the
Galoper program, its values are evenly distributed:

X1 = X; + 6%;. S

Equation 1 is iterated many times for each crystal, ‘with each
iteration termed a growth cycle. After several growth cycles
involving many crystals, 2 lognormal CSD results. LPE growth
requires an exponentially incredsing amount of nutrients as the

number of growth cycles (or time) increases, a demand that -
quickly exceeds a system’s capacity to supply reactants. Then -

supply-controlled growth (described below) commences, pre-
sumably while the crystals are in the nm size range.
During surface-controlled LPE growth, crystals are subjected

both to size-dependent growth (during which larger crystals

tend to grow faster), and to crystal size dispersion (during
which crystals having the same initial size may grow at differ-

ent rates). Both processes are represented in.the €X; term in .

Egn. 1, where X; manifests size dependence; and the range in ¢;
influences d1spers1on

Whereas surface-controlled LPE growth produces a lognor-
mally shaped CSD, an asymptotic CSD develops if new nuclei
are added to a system at & constant rate as LPE growth pro-
ceeds. When nucleation ceases, the asymptotic CSD may’
evolve toward alognormal shape by continued LPE growth.
Lognormal-shaped CSDs ‘also can be produced by surface-
controlled (LPE) growth in systems having a decaying nucle-
ation rate. During this mechanism, nucleation gradually sub-
sides while previously nucleated crystals continue LPE growth,
leading to a pseudo-lognormal or to a lognormal-shaped CSD.
How closely the CSD approaches a true lognormal distribution
depends on the duration of LPE growth following nucleation.

The second regime for size-dependent growth is governed by
a supply-controlled mechanism. Crystals grow according to a
modified version of the LPE, during which there is a smaller
tendency for growth dispersion (i.e., a smaller range for ).
This type of growth leads to a decreasing rate of growth thh
increasing mean size, and to a constant size variance (e, 2=
constant). The volume increase of each crystal (AV)) is limited
by the availability of reactants, whereby the unconstrained
growth volume demanded by Egn. (1) for each crystal
(AV, px) is reduced proportionately by the ratio of total vol-
ume allowed for each growth cycle for all crystals in the system

(ZAV,) to the total volume required for all crystals by uncon—_
’stra.med LPE growth (BAV; ;pg):

DAV,

Vj = (AVJ.LPE) — . @)

. Z AViree

AV; is added to the volume of the previous crystal and the new
crystal dimension is calculated for use in Egn. 1. This growth
mechanism does not in itself generate a distinctive CSD shape,
but rather, preserves the size variance and relative shape of a
previously established CSD (e.g., asymptotic, lognormal, etc.)
as crystal growth continues. This shape is preserved because

- the AV; term in Eqn. 2 generally is very small, leading to a

smaill growth term (gX;) in Eqn. 1. Therefore, although size-
dependent growth continues during supply-controlled growth,

there is little tendency for growth dispersion, and the growth.

rate can be approximated as dX/dt = kX (see also Nordeng and
Sibley, 1996).

Growth by LPE (both by surface- control and by supply-
control mechanisms) is in distinct contrast to traditional crystal

" growth theory which expresses crystal growth rates as mass per
" ‘unit surface area per unit time, and therefore, assumes that

linear growth rate is independent of crystal size (e.g., dX/df =
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Fig. 2. (A) Characteristic asymptotic CSD for sample CCNG-30/2.
The Galoper simulation used a critical nucleus size of 3 nm (read from
Fig. 10, using £ = 20 from Table 1) with 143 crystals nucleating per
calculation cycle, followed by supply-controlled growth to the correct
mean size; level of significance for xz comparison between simulated
and measured CSDs = 2.5 to 5%. (B) Characteristic asymptotic CSD
for sample CCNG-2. CSD simulated as in A, with significance level =
1 to 5%. (C) Bimodal CSD resulting from sequential addition of CaCl,
and KOH for sample CCNG-25. .
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significance level for * comparison between simulation and measure-
ments = 10 to 20%. (B) Plot of size vs. frequency for a typical lognormal
profile of synthetically grown calcite (CCNG-40). Galoper simulation used

a critical nucleus size of 2.5 nm (Table 1 and Fig. 10) and a probability for .

nucleation of 0.85, followed by supply-controlled growth; significance
level > 20%. (C) Plot of size vs. frequency for a typical lognormal profile
of synthetically grown calcite (CCNG-43/3). Galoper simulation used a
critical nucleus size of 3 nm (Table 1 and Fig, 10), and a probability for
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Fig. 6. Reduced plot of lognormal, transitional, and Ostwald CSDs showmg a progressive shift with increasing () toward
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k; see Nielsen, 1964). This approach is exemplified by Mec-
Cabe’s law (McCabe, 1929), which states that geometrically
similar crystals in the same solution will grow at the same
linear rate. Therefore, this kinetic theory infers that the absolute
size differences between crystals are maintained as growth
proceeds, an important consequence of which is a diminishing
crystal size variance (8% with time. Surface-controlled LPE
growth, however, mandates that crystal size variance increases
with mean diameter, because the range of values possible for ¢;
in Eqn. 1 leads to crystal size dispersion. Conversely, supply-
(transport-) controlled LPE growth mandates that variance re-
mains constant during growth. There is a growing body of
experimental evidence that supports crystal size dispersion (for

sucrose, White and Wright, 1971), and size-dependent growth-

for a variety of synthetic crystal systems, e.g., Carming and
Randolph, 1967 (Na,SO, * 10H,0); Garside and Jaficié, 1976
[KAI(SO,), - 12H,0]; Berglund et al., 1983 (KNO;); Tai and
Yu, 1989 [KAL(SO,), + 12H,0]; and Tai et al., 1993 (CaCO,),

as well as in geologic systems, e.g., Nordeng and Sibley, 1996,
and Makowitz and Sibley, 1999.

According to LSW theory [Lifshitz and Slyozov (1961), and
Wagner (1961)], a specific, negatively skewed shape is pro-
duced by diffusion-controlled Ostwald ripening. During this
process, the smallest crystals, rendered unstable by their large

specific surface free energy and by a falling level of supersat- -

uration in solution, dissolve to yield material for growth of
larger crystals. The overall growth rate is determined by the
rate of reactant supply to the larger crystals (e.g., by the rate of
dissolution of smaller crystals).

3. EXPERIMENTAL METHODS

Experiments were performed in a 400 mL double-walled
glass reactor vessel connected to a circulating water bath which
maintained a constant temperature of 25.0 = 0.2°C. The reactor
was covered but not sealed. A propeller rotating at 250 to 300
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rpm was used for mixing in the reactor vessel to avoid grinding

" crystals (which may occur with a magnetic stir bar) during all

experiments except CCNG-9. All solutions were filtered

through 0.1 um cellulose nitrate (CN) filters prior to the ex-

periment and were used within 36 h. Initial Ca>* concentration
in the CaCl, solutions was measured by ethylenediaminetet-

- raacetic acid (BDTA)/calcein titration (Diehl, 1964) to adjust
~ . for variable hydration effects of the stock CaCl, - 2H,0. Table
" 1 shows the starting concentrations of CaCl, and NaHCO,, and
. includes KNOj that was added to regulate ionic strength.

Constant composition experiments were performed to simu-
late supply-controlled growth, and were based on the method of

Tomson and Nancollas (1978), where pH, [Ca®*], and [CO3™]
- were. kept at a constant level throughout the experiment to
~maintain an-invariant level of supersaturation (£}), defined as:

Q = Q/K,, _ e

where

Q = [B*)/[Ca**][HCO5], @

in which the brackets refer to activities in solution, and K, is
the solubility product of calcite crystals in the standard state
(i.e., crystals having an essentially infinite particle size). Solu-
tion speciation and (} were calculated using either the
WATEQ4F program of Ball and Nordstrom (1991) or the
PHREEQC program of Parkhurst (1995).

Constant composition conditions were achieved using a
Brinkmann pH-stat titration system, where equal volumes of

equimolar CaCl, and Na,COj, solutions containing KNO; (Ta-

ble'1) were added to the reactor vessel at a rate equal to the
growth rate of the crystals. Thus, as reactants were depleted
during crystal growth (accompanied by a drop in pH), titrant
solutions were automatically added to maintain a constant pH
of 8.5. The volumes of titrants added and pH were monitored

continuously throughout the experiment to provide growth rate ‘

data.
Both vaterite (the hexagonal polymorph of CaCO;) and
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calcite (trigonal CaCO,) crystallized during the experiments,
but in all but three experiments the amount of vaterite was
considerably subordinate to that of calcite. The presence of

vaterite did not appear to influence the shape of calcite CSDs -

because the CSD shape was independent of the presence of
wvaterite and consistent with that expected for the experimental
conditions. Attempts were made to suppress noncalcite phases
in the higher Q) experiments (Table 1) by adding high (0.5 M).
concentrations of NaCl (Kitano, 1962), with varied success.
Crystallization of aragonite (the orthorhombic CaCO; poly--
morph) is not favored under ambient temperature conditions in
the absence of Mg?*, and was not found optically or by X-ray
diffraction. '

After completion of an experiment, solutions and crystals
were filtered immediately through a 0.45 pm CN filter, and the:
reaction-product crystals dried in air at 40°C for approximately
30 min. Samples were removed mechanically from the CN
filter and placed on a 27 X 46 mm glass slide; a coverslip was
then added using Canada balsam. Crystal size was measured
with a conventional petrographic microscope using a filar mi-
crometer ocular (total magnification ~500X) and partly
crossed polars to utilize properties of birefringence and variable
relief to improve definition of crystal edges. Measurement
using optical light-scattering devices (e.g., Coulter counter,
Malvern Zetasizer) overestimated crystal size by factors vary-
ing from 2 to 6, a likely result of measurement of crystal
aggregates as coherent units.

Synthetic crystals were measured on their long diagonal;

measurements were averaged for very asymmetric rhombohe-
dra, although most crystals were equant in habit. Approxi-
mately 300 crystals were measured per sample. This method of
measurement was validated for a calcite sample from the Baker
Chemical Co. (catalog no. 1288) by comparing the surface area
calculated from the shape of the CSD (0.31 m?/g) with that
measured by the nitrogen Brunaver-Emmett-Teller (BET)
method (0.256 = 0.008 m¥/g).

CSDs also were determined for calcite crystals found within
septarian concretions in an.Upper Cretaceous shale in south-
eastern Colorado. These crystals were measured on a diagonal
using either a millimeter scale or a stereomicroscope with a
calibrated ocular micrometer.

CSDs were calculated from crystal size data using the pro-
gram CrystalCounter, written in Microsoft Excel macro lan-
guage. Because group size can infiuence the chi-square (x?) fit
of the lognormal distribution (see below), it is important to
have a consistent rationale in selecting this parameter. In gen-
eral, group size was setto a minimum that barely mitigated the
“noise” level in the plot, resulting in most experimerits having
a group size that was about one-fifth of the mean crystal size.
The program then calculates the CSD shape, the mean crystal
size, the mean of the natural logarithms of the sizes [@ =
SIn(X)f(X), where In(X) is the natural logarithm of the crystal
group size, and AX) is the frequency of crystals for that size],
and the variance of the natural logarithms of the sizes [8* =
S(nX — a)?AX)]. The sensitivity of 82 to the presence of very
small crystals at the limit of optical resolution (less than ~ 1
wm) limits the precision of the size variance calculation.

The ¥ test (Krumbein and Graybill, 1965) was used to
assess the lognormal fit of the data. This test compares differ-
ential curves of theoretical lognormal vs. measured size distri-

butions, and gives a level of significance ranging from <1%
(lognormal fit is not significant) to >20% (high level of sig-
nificance), CSDs are considered to be.lognormal-if the signif-
icance level for comparison between the measured and theo-

retical curves is equal to or greater than. the 1.to 5%: range,-',
(Exner and Lukas, 1971). : :

4 EFFECTS OF CRYSTAL GROWTH METHODS ON CSD

SHAPES'

Asymptotic CSDs (Figs. 2A,B) were produced by stepwise -
. addition (by pipette) of concentrated (excess) CaCl, solution to
the surface of moderately supersaturated solutions (2 = 20; see -

Table 1). The excess calcium solution was added 5 to 10 times
over the course of 20 to 60 min, followed by pH adjustments
with KOH after each addition. The pH was allowed to stabilize
for several minutes. after each addition, and then was adjusted
to 8.5 using 0.05 M KOH. Presumably multiple nucleation
events were triggered by the stepwise additions of highly
concentrated CaCl, solution and/or KOH to the surface of the
solution, both of which would increase the local level of su-
persaturation. The addition of excess CaCl, was discontinued
when pH no longer would stabilize, but continued to decrease.
This spontaneous decrease in pH likely was related to calcite
growth, and at this point calcite crystals could be observed
microscopically.

A bimodal CSD developed from a similar expenment (Fig.
20), but which had only two KOH additions, separated in time
by 30 min (Table 1). This experiment verified the premise that
distinct nucleation events would be expressed in the resultant
CSD.

Crystals having lognormal CSDs were grown-by a method
similar to that used for the asymptotic experiments, but in
contrast to the stepwise addition of reactants to the solution
surface, excess CaCl, and KOH were added through a sub-
merged tube with & peristaltic pump at a flow rate of approx-
imately 0.3 ml/min (except for the CCNG-35 experiment,
during which excess CaCl, and KOH were added rapidly by

volumetric pipette); initial solution {} values ranged between -

22 and 41 (Table 1). In these experiments, the continuous
(rather than incremental) addition of reactants over the course
of 0 to 170 min presumably resulted in a single nucleation
event that was followed by LPE growth. Crystals then were
allowed to grow with no further solution additions until the pH
dropped to 8.5, after which constant composition/supply-con-
trolled growth was initiated and maintained-by the constant
composition method of Tomson and Nancollas (1978). A log-
normal CSD for a commercially prepared calcite (Baker Chem-
ical Co.) is presented in Figure.3A for comparison with our

- experiments (Figs. 3B and 3C).

In several experiments (CCNG 42, 43, and 44), sequennal
samples were taken at timed intervals to assess the effect of
continued growth (i.e., larger mean diameter) on the CSD shape

and size variance. Generally, the relative lognormal shape and '

B? remained approximately constant, as would be expected for
supply-controlled growth.

CSDs having the shape typical for Ostwald ripening (i.e., a
curve that is overall shifted right from the theoretical lognormal
curve and that has a left-skewed tail; see Fig. 4) were obtained
by rapid mixing of equimolar solutions of Ca®* and CO3~
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Table 2. Crystal size distribution data and statistical evaluation for calcite crystal growth experiments; horizontal lines indicate continuous growth

NA = not applicable.

“(Table 1), resulting in working solutions with relatively high

supersaturation levels (Q > 100), in contrast to the lower initial
Q values (20 to 41) for the asymptotic and lognormal experi-

- ments. The “nominal” initial supersaturation levels were cal-

culated to have & = 106 to 3090. There is experimental
evidence, howéver, that the actual € cannot exceed a level of

80 to 100 because of a very short induction time (Sohnel and -

Mullin, 1987). In other words, the rate of crystallization ex-

ceeds the mixing velocity so that crystal precipitation limits the -

actual O values to about 100. The data shown in Figs. 4A,B do
not fit-either the asymptotic or theoretical lognormal curves.
However, data for all five Ostwald experiments closely ap-
proach the shape of the universal steady-state curve expected

. for diffusion-controlled Ostwald ripening, according to the
- LSW theory (Lifshitz and Slyozov, 1961; Wagner, 1961), when
. plotted on reduced axes (i.e., normalized to mean crystal size

and maximum frequency; see Fig. 4C).

.. Continued growth of previously Ostwald ripened crystals -
. was achieved in a subsequent experiment by adding seed crys-
- tals-of a previously ripened sample (CCNG-19) to a supersat-

urated solution and then by allowing the crystals to grow at
constant pH and solution composition. The reduced shape of
the CSD for these crystals (CCP-4)-remained constant (i.e., B
did not change appreciably) while the mean size increased from
8.5 to 10.6 wm, thereby indicating that supply—controlled
growth followed Ostwald ripening.

Size distributions having shapes intermediate to lognormal

experiments.
Lognormal
Group Average significance,
CSD shape Sample no. a B size size (nm) X test

asymptotic CCNG-3072 8.45 0.64 1,500 6,420 NA
asymptotic CCNG-30/3 8.78 0.68 1,700 8,864 NA
asymptotic CCNG-2 7.60 0.52 1,000 2,585 NA
lognormal CCNG-42/1 8.91 0.30 1,000 8,500 2.5-5
~lognormal v CCNG-42/2 9.49 0.27 2,000 14,870 <1
lognormal’ CCNG-42/3 9.62 036" 1,500 17,810 10-20
lognormal CCNG-43/1 . 8.69 0.38 2,000 7,140 >20
lognormal CCNG-43/2 9.00 0.49 2,000 10,320 1-5
lognormal CCNG-43/3 9.61 0.38 2,000 17,853 >20
lognormal CCNG-44/1 ' . 8.81 0.32 2,000 7,950 >20
lognormal CCNG-44/2 - 9.49 0.23 2,000 14,800 >20
lognormal CCNG-40 ‘ 8.65 0.16 1,000 6,200 >20
lognormal . CCNG-45/3 9.33 0.25 2,700 12,650 10-20
lognormal CCNG-35 5.03 0.32 2,000 9,770 >20
lognormal Baker calcite 7.72 - 0.59 . 500 2,944 10-20
Ostwald CCNG-9 T 914 0.10 1,500 9,359 NA
Ostwald . CCNG-13 10.20 0.09 3,000 28,080 NA
Ostwald CCNG-19 9.01 0.09 1,000 8,522 NA
Ostwald CCNG-20 9.50 0.08 2,000 13,792 NA
Ostwald CCpP-4 9.24 0.07 2,000 10,640 NA
- transitional 7-26 T 9.40 0.31 2,000 . 13,953 NA
transitional ) 7-12 9.15 0.13 2,000 10,040 NA
transitional 7-20 9.65 0.24 2,000 17,294 NA
bimodal CCNG-25 . 9.93 0.25 3,000 22,812 NA

and Ostwald CSDs (Fig. 5) were generated in a similar manner,
but initial ) values were adjusted to values between 28.2 and
69.2. This transition is demonstrated clearly in Figure 6, where
the CSDs progressively approach the theoretical Ostwald curve
with increasing (.

A plot of & vs, 82 for the experimental data (Fig. 7 and Table
2) reveals -that the three types of CSD shapes (asymptotic,
lognormal, and Ostwald) differ in their overall size variance,
with their mean- 82 values equal to 0.61, 0.32, and 0.086,
respectively. This difference in variance is readily discernible
under the optical microscope and by scanning electron micro-
scope (SEM). For example, an SEM photograph of a sample
(Baker calcite, Fig. 8A) having a lognormally shaped CSD with
a variance of 0.52 has a distinctly variable crystal size com-
pared to the relatively uniform crystal size of an Ostwald
ripened sample having a variance of 0.09 (Fig. 8B).

CSDs from naturally occurring calcite crystals (Fig. 9) have
a lognormal distribution (with levels of significance in the e
test > 10%):for two crystal populations having very different
mean sizes, i.e., 2.6 mm and 6.4 mm. .

5. DISCUSSION

The results shown in Table 2 indicate that all three theoret-

ical shapes (asymptotic, lognormal, and Ostwald) were gener-
ated in these experiments. The asymptotically shaped distribu-
tions (Fig. 2), formed when reactant solution was added to the
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Fig. 8. (A) SEM photo of synthetic calcite (Baker) illustrating a lognormal CSD with large size variance (B = 0.52).
(B) SEM photo of synthetic calcite (CCNG-19) illustrating an Ostwald CSD with a small size variance (8% = 0.09).
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Fig. 9. Lognormal size distributions for two. naturally occurring calcite samples from southeastern Colorado.

. experiments in a series of increments, are readﬂy explamed if
new calcite nuclei were formed during each addition. The
incremental formation of new crystals, accompanied by the
simultaneous growth of larger crystals by size-dependent, LPE
growth, leads to a predommance of small crystal sizes, and to
. an exponential increase in B? as o increases (Eberl et al., 1998).

- . Such a mechanism accounts for the large size variance for this

type of CSD (Fig. 7). Galoper simulated CSDs, calculated

according to the mechanism of constant-rate nucleation and

LPE growth (followed by supply-controlled growth as will be

-discussed below) are presented for companson thh the exper- . .

imental data. (Figs: 2A,B).
. The lognormally shaped CSDs, formed by the gradual addi-

’ ”thIl of redctant solutions,-are generated experimentally as the
~ nucleation rate decays and surface-controlled LPE growth con--

tinues. LPE growth with a.decaying nucleation rate leads to a
linear increase in 82 as « increases, thereby accounting for the
intermediate size variance for this type of CSD (Fig. 7). The

: Galoper sxmulated curves for th1s mechanism are presented in

Figures 3B,C. .
The CSD shapes attributed to Ostwald npenmg closely fit the

.theoretical universal steady-state curve predicted by the LSW.
. "theory (Fig. 4C). The small crystal size variances (Fig. 7) are
attributed to this process, during which ‘B> decreases toward 2 -

constant, theoretical minimum value (based on Galoper calcu-

. ‘lations) of about 0.06.

The presénce of Ostwald ripening seems intuitively incon-

gruous with experimental conditions that maintained high lev- .-

els of supersaturation. Ostwald ripening has been presumed to-

. occur at low-levels of- supersaturation, where the smallest: .~
» crystals are-unstable due to their high specific. surface energy

(e.g., Baronnet, 1982).:However, the mechanistm can be under-

stood by cdnsidering data given by Morse and Mackenzie
(1990) that show an inverse log relation between particle size
and solubility for calcite. Alternatively, K, and consequently
Q (Eqn. 3) as a function of size can be calculated from free
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Fig. 10. Solubility of calcite vs. crystal size. The {} axis is presented with respect to .an infinitely large crystal, and the
calculation for the curve includes the effects of surface-free energy on the calculation. The value for the surface-free energy
~ for CaCOj; used in the calcnlation is from Stumm (1992), and values for other free energies (see Eqn. 3) are from Garrels

and Christ (1965).

energies for the species represented in Eqn. 4 (Gamels and
Christ, 1965) and from the surface free energy for calcite of 94
mJm™~? given by Stumm (1992). A plot of Q) (which is pre-
sented in Fig. 10 as the ratio of the size-dependent solubility
product to the solubility product for an infinitely large crystal)
as a function of crystal size indicates that very small crystals
may dissolve even at high levels of supersaturation (with re-
spect to an infinitely large crystal), and thereby contribute to the
ripening’ process. For example, at a nominal ) of approxi-
mately 3000 (see Table 1), crystals smaller than 1 nm may
dissolve, whereas at an Q) of approximately 100 (the maximum
attainable level of supersaturation according to S6hnel and
Maullin, 1987), crystals smaller than 2 nm may dissolve. Con-
sequently, Ostwald ripening may occur in systems having rapid
nucleation kinetics because three factors ensure that numerous

crystals occur simultaneously in this “sensitive” size range: (1)

the smallest crystals are extremely. small because the size of the

critical nucleus formed during nucleation decreases with in-
creasing levels of supersaturation (Walton, 1967; Stumm,
1992); (2) most of these small crystals have nucleated simul-
taneously because the nucleation rate increases with increasing

supersaturation (Stumm, 1992); and (3) most of the smallest -

crystals have not grown beyond the sensitive size range be-
cause the rate of LPE growth decreases as crystal size de-

creases. Therefore, this type of Ostwald ripening must happen

very early in the crystal growth process, at large initial values
of £, in response to falling levels of supersaturation (caused by
continued crystal growth), during which there were many crys-

" tals less than about 3 nm in size within the system to dissolve

and thereby sustain the process.

St e
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Conversely, larger (and less soluble) nuclei which form at
lower levels of supersaturation are less subject to ripening. For
example, critical nuclei less than 3 nm are not expected to form

. in solutions having values of ) < 20 (Fig. 10 and Table 1).

Moreover, a slower nucleation rate in such systems would lead
to a predominance of LPE growth as the nucleation rate decays,
thereby resulting in lognormal CSDs. '

Earlier crystal growth theories (e.g., Dunning, 1961; S6hnel
and Garside; 1992) postulated that the shape, of the Ostwald

curve (Fig. 4C), here attributed to Ostwald ripening, resulted -
from a single nucleation event that died out, and then was
followed by a period whete all crystals grew at the same rate.

This explanation seems improbable, because by this mecha-
nism systems.having différent rates of crystal growth and

_ different crystal population densities would be expected to

yield different CSD profiles. Five of our experimental systems,
each having different experimental conditions (Table 1),

. yielded the same reduced CSD profile, 2 unique shape which

fits that expected for Ostwald ripening.
The transitional plots shown in Figs. 5 and 6 further sub-
stantiate the hypothesis that it is initial solution saturation state

" (i.e., ) that controls the degree of ripening. In contrast to the

Ostwald CSDs in Figure 4 (in which the initial { values were
in excess of about 100), these plots, with () ranging from
approximately 28 to 69 (Table 1), show less of a shift from the

‘lognormal toward the Ostwald curve, which indicates less

ripening. The extent of the right shift of the curve maximum
can be correlated approximately to the initial solution concen-
tration. The shapes of the transitional CSDs were simulated
using the Galoper program by assuming a decaying nucleation
rate followed by Ostwald ripening (Fig. 5).

The presence of supply-controlled LPE growth, which does
not have a specific CSD shape of its own, can be inferred from
the previously described crystal growth experiments, because
nucleation, surface-controlled LPE growth, and Ostwald ripen-
ing can occur in these systems only in the nanometer size range,
whereas the experimentally measured mean sizes are three

orders of magnitude larger. Supply-controlled growth, during .

which most of the mass of the crystals is added, mandates that
the relative shapes and variances of the distributions, formed at
small sizes, are maintained as all of the crystals grow at
approximately the same proportional rate (Eberl et al., 1998). In

. other” words, during supply-controlled growth, if the mean
" doubles in size, then all of the crystals in the system also double -

in size. It is because-of this preservation of relative CSD shapes
that conditions of early nucleation and crystallization can be
inferred based on observed CSDs.

“This point is illustrated in Table 2 and in F1gure 7 for
continuous-growth lognormal (CCNG 42 to 44) and Ostwald
ripened (CCNG-19 and CCP-4) experiments, where B? remains
relatively constant over as much as a 2.5-fold increase in crystal

- size for extended growth of the same sample. If sample CCNG-

42, Wlth a-mean size of 8.5 i and a A% of 0.30, had grown to
the size of sample CCNG-44, with a mean size of 17.8 um and
approximately the same % (0.36), by McCabe’s law (dX/dt =

* k), Galoper calculations show that the CSD would have lost its
‘lognormal shape and would have developed a 8% of 0.07.

Likewise, based on McCabe's law, CCP-4 crystals grown from
seed crystals from the CCNG-19 experiment would have
yielded a CSD which no longer fit the universal steady-state

curve, and which had a 82 of 0.03. Thus, it can be concluded
that size-dependent growth (dX/dt = kX), rather than Mc-
Cabe’s law, prevailed in these experiments. However, under

_ some experimental conditions, such as without stirring, non—

size-dependent growth may predominate (e.g., McCabe and
Stevens, 1951). .
CSD shapes observed for synthetic calcite also may occur in
nature. For example, the lognormal CSDs for calcite crystals
from southeastern Colorado (Fig. 9) can be explained by a

~ mechanism that is governed initially by surface-controlled
. (LPE) growth, followed by a longer period of supply-limited
. growth, during which the initially established lognormal shape
"is preserved during an incréase in mean crystal size. The

change from surface- to supply-controlled growth kinetics pre-
sumably resulted from an exponential increase in the demand
for reactants (which is required to maintain LPE growth) that
eventually exceeded the rate of nutrient supply provided by the
system. The lognormal CSD is common in the geologic record
(Bberl et al., 1998, and references therein; Kile and Eberl,

* 1999), 'and determination of the growth mechanism based on
such CSDs may be used to infer geologic condmons early in |

the growth history of crystals.

6. CONCLUSIONS

Three basic shapes for calcite CSDs were realized in these
experiments: asymptotic, lognormal, and Ostwald. Experimen-
tal conditions required to produce these three shapes are con-
sistent with previously proposed mechanisms that can simulate
these shapes: constant-rate nucleation and LPE growth (asymp-
totic CSD); decaying nucleation rate and LPE growth (lognor-
mal CSD); and Ostwald ripening (Ostwald CSD, characterized
by a unique negative skew). These CSD shapes were main-
tained during subsequent supply-controlled growth, when most
of the mass of the crystals was added. Therefore, it may be
possible to infer early environments of crystallization for nat-
ural calcite and other minerals from the shapes of their CSDs.
This approach also could be used as a guide to control CSD
shape during industrial crystallization.
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