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Contaminant Transport

INTRODUCTION

Numerous environmental management problems involve the transport and reactions of dis-
solved chemicals that are either native to the soil, added deliberately to the soil surface, or
are accidentally spilled. The design of optimum application rates and application timing of
fertilizer, domestic waste (sewage sludge), wastewater irrigation, herbicide, and low-level ra-
dioactive waste (disposal) depends on methodologies that maximize the degradation or
retention of these chemicals within the unsaturated zone, while minimizing their mobility. In-
creased public awareness of the contamination of ground water by agricultural, industrial,
and municipal chemicals (Pye, Patrick, and Quarles 1983) has focused considerable attention
on solute transport, creating a heightened awareness and increased research in this area (Van
Genuchten and Jury, 1987).

Transport of chemicals through the unsaturated zone depends on many factors: ion
exclusion; ion exchange; volatilization; dissolution and precipitation; chemical and biological
transformation; biodegradation; adsorption; diffusion; dispersion and volumetric water
content; unsaturated hydraulic conductivity; and the matric potential of the medium (see
figure 10.1). The investigation of transport through the unsaturated zone evolved primarily
within the domain of soil science (i.e., soil physics), but, because of its importance and its
complexity, has enlarged to encompass the fields of hydrology; hydrogeology; geochemistry,
agronomy, agricultural engineering, geology, and environmental science. Due to its diversity,
research has expanded to include: areas of mathematical approaches to solve flow and trans-
port equations; theoretical investigations concerning homogeneous media through labora-
tory studies; the effects of preferential pathways and macropores on flow; fractal flow of
solutes; field experiments with inherent heterogeneity; laboratory experiments focusing on
exchange chromatography; radiation-scanning tomography; and the influence of biological,
hydrodynamic, and geochemical processes during unsaturated flow conditions. This is not a
complete list, but serves to illustrate the broad scope of research currently being conducted
in the area of contaminant transport within unsaturated soils.

10.1 PHYSICAL PROCESSES AND MOVEMENT OF SOLUTES

Many texts treat the unsaturated zone as if it were in static equilibrium. Because soil is a
dynamic system, however, it is seldom in equilibrium. This is because conditions continu-
ally change due to physical, chemical, and atmospheric influences or disturbances. For
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convenience in modeling, flux, and calculations of transport, the assumption of equilibrium
conditions allows easier determination of these parameters. Disturbances that take place
within the unsaturated zone normally will quickly dissipate as a system moves toward equi-
librium. Earlier, we discussed the potential and thermodynamics of water within the unsatu-
rated zone, the chemical properties of that water, and unsaturated water flow (chapters 4, 5,
and 8). This section briefly outlines the physical processes that concern the concepts of water
and solute flow in the unsaturated zone.

The flow of a solute in soils involves both movement and accumulation. Solute move-
ment may be described as the change of position of water (solute) over a given time within
the unsaturated-soil matrix. The accumulation of a solute usually refers to the change in mass
of solute at a given volume of the matrix for a specific time period. This is usually caused by
recharge events such as rainfall or irrigation, spills, and intentional dumping. However, the
volume at a specific location can decrease by evaporation, drainage, advective flow, and/or
plant uptake. The driving force for advective flow is the hydraulic gradient. During equilib-
rium conditions no fluid movement takes place because the potential within the soil matrix
is the same at each point (i.e., hydraulic heads are static), but concentrations must also be in
equilibrium to prevent diffusive flow of mass. Thus, the sum of static forces, = F° = 0. As
equilibrium changes during disturbance or other influencing factors, the sum of static forces
is not zero, and we can say that this becomes the driving force for advective transport.To give
more detail, Newton’s second law of motion describes force, F, as

F = ma (10.1)

where F is force in N (kg m s™2), m is mass in kg, and a is acceleration in m s™2. When more
than one force is acting on the fluid, they can be added in the proper order so that the sum of
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all forces acting on the fluid simultaneously is the vector sum, or resultant force SF If the
vector sum is zero, acceleration of the fluid is zero and the body is at mechanical equilibrium.
The sum of forces can be separated into two types of forces: drag forces (dynamic), F¢, and
static forces, F*, such that 3 F = T F* + 3 F. Static forces are always present, but drag forces
occur only when static forces cause a body to move. These are the reaction forces associated
with movement and may be written as = F° = —3 F The conditions for static equilibrium
can also be expressed in terms of potential, y, (called hydraulic potential). This is expressed
mathematically as

2F _ o, (102)

m 0z

where iy, is the sum of both the pressure potential, ¥,, and gravitational potential, ¢, (see
chapter 4), and z is the vertical direction; the minus sign indicates that movement is taking
place from higher to lower potential. The driving force (hydraulic gradient) can also be writ-
ten in terms of force per-unit volume as = —dp,,/dz or per-unit weight = —dH/dz where 4,
isinJkg™,p,isinJm™> = Pa,and Hisin JN~! = m.

The rate of water movement through the unsaturated zone is typically referred to as a
flux density, g. Often, the term “flux” (the volume of water divided by time) will be used when
“flux density” is actually meant. Flux density is the amount of water (solute) passing through
a perpendicular plane of unit area in direction z during a specific time interval. This volume
or mass is divided by the area of the plane and the magnitude of the time interval—that is,
the mass of solute/(area * time). The flux density is normally expressed on a volume basis, but
is also expressed on a mass and weight basis. This becomes more apparent later in this chap-
ter, in the discussion of the continuity equation.

We have mentioned both water flux and solute flux. Water flux is aptly described by
Darcy’s law (discussed in chapter 7); solute flux entails the movement of solutes (or chemi-
cals) of various kinds with water. To obtain the solute flux, we multiply the water flux or flux
density g by the dissolved concentration C of solute in solution, expressed as mass of solute
per volume of soil solution. While this gives the general case qC (hereafter referred to as J);
itis only an approximation because g is averaged over many soil pores, and does not repre-
sent actual water-flow paths that must meander around individual soil particles and various
air pathways. There is an extra motion involved, described as hydrodynamic dispersion, D,
which must be added to J to describe the motion of the solute relative to the average motion,
so thatJ + Dy = total flux. This is a simplified equation for solute flux. A more-detailed dis-
cussion regarding hydrodynamic dispersion and other parameters that influence solute flux
is given in the following pages.

10.2 TYPES OF FLUID FLOW

When fluid flow takes place within the unsaturated zone, we consider only the water or solute
within the zone of interest. When investigating the flow of infiltrating water, there are always
two fluids present within the system: the fluid introduced and the fluid that is already present.
The fluid present will almost always have a different ion concentration and activity level than
the introduced fluid. Thus, we can think in terms of dispersion and mixing of fluids. Generally,
there are two types of flow that are possible when two or more fluids occupy the same space
within the soil matrix; these are miscible and immiscible flow, commonly referred to as “mis-
cible displacement™ and “immiscible displacement.” In the case of miscible displacement, the
fluids are completely soluble in each other, indicating that interfacial tension between the
fluids is zero and there is no distinct fluid—fluid interface; this is the case with hydrodynamic
dispersion. For immiscible displacement, the fluids do not mix and there is both interfacial
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tension and a distinct interface between the fluids, indicating a pore- or capillary-pressure
difference across the fluid—fluid interface.

For unsaturated-zone transport studies, the case of miscible displacement is the most
common. As an example, if we investigate the hydraulic parameters of a field site, it is normal
procedure to apply a tracer (usually conservative, such as a bromide) in recharge water. The
infiltrating recharge water miscibly displaces the soil water already present. The two fluids
initially can be separated by an abrupt interface, but due to hydrodynamic dispersion and dif-
fusion, this interface immediately transforms into a transition zone between the two fluids. In
comparison to the entire matrix domain of consideration, the transition zone is relatively
small.

The most common occurrence of immiscible displacement in the unsaturated zone is
when air fills the void space not occupied by water. This is a special case of the simultaneous
flow of two immiscible fluids, with air being the non-wetting fluid. Various types of two-fluid
flow occur in the engineering field. Examples of these are the flow of oil, water, and gas in oil
reservoirs during production and secondary recovery operations (immiscible displacement),
and injection of solvents during the secondary recovery process (miscible displacement).

10.3 BREAKTHROUGH CURVES, PISTON FLOW, AND HYDRODYNAMIC DISPERSION

c/c,

0.5

A breakthrough curve is a graphical representation (or plot) of outflow concentration versus
time or cumulative water drainage during an experiment. Much of the literature dealing with
solute transport in the unsaturated zone reports the use of breakthrough curves in great de-
tail—that is, mass-transfer studies in sorbing porous media (Van Genuchten and Wierenga
1976), miscible displacement in soils (Nielsen and Biggar 1962), and many others. The break-
through curve indicates the relative tracer distribution of the effluent, with respect to the col-
umn or area of the soil matrix under consideration as it relates to either pore volume, time,
or both. It is also a very useful way to illustrate the physical meaning of the advection—
dispersion equation in one-dimensional form, as well as for comparing results from a model
to data collected in the field or laboratory—that is, a plot of the modeled values versus ex-
perimental data. Examination of a breakthrough curve can indicate how aggregated the soil
is, the presence of macropores or preferential flow paths, or presence of adsorption sites. A
typical breakthrough curve is shown in figure 10.2. For an ideal medium, a C/C, would reach
0.5 at V/V, = 1. However, this rarely happens in normal conditions due to the effects of me-
chanical dispersion and molecular diffusion which cause spreading of the curve. Because of
these effects, the tracer begins to appear in the effluent at the outflow end of the column at
time ¢, (initial breakthrough), before the arrival of water traveling at velocity ¢, (average ve-
locity; see figure 10.2).
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Additionally, the drier the soil, the greater the volume of effluent required for C/C, = 1
and the more tailing that occurs, but the sooner the effluent would break through. This hap-
pens due to discontinuity of the number of macropores as water content decreases (see fig-
ure 10.3). The overall number of macropores decreases, making less pore-space available for
transport as water films around the particles decrease in thickness and length of continuous
flow. As long as macropores are present (and because they fill fastest) effluent appears at an
earlier breakthrough time and significant tailing occurs due to diffusion into areas of immo-
bile (stagnant) water or intra-aggregates. Initially, these stagnant areas are bypassed, but as
time proceeds, diffusion into them increases.

Piston flow refers to total displacement of the original solution with the incoming solute or
tracer, without mixing. This is a direct result of the “piston” (sharp wetting front) displacing
the total amount of solution in the column (see figure 10.2). In a strict sense, piston flow is a
special case of immiscible displacement in which the solute moves into an area and displaces
not by mixing, but by pushing out the original solution and replacing it. This happens due to
the properties of the medium and of the incoming and original solutions. These properties
include temperature, viscosity, solubility, concentration, and other chemical and physical pa-
rameters. Since no mixing takes place during piston flow, the solute pushes out the original
concentration, dependent on the total amount of incoming solute. As the total amount of in-
coming solute increases, more of the original solution is displaced; this is an additive effect.
Also, because no mixing occurs, the displacement relies on advective velocity and no diffu-
sion takes place. An example of this is the displacement of water by air, or oil by water. Since
both components or liquids are immiscible and advective velocity overcomes any effects due
to diffusion, we can expect a very steep front on the breakthrough curve during piston flow.
However, since both the radius of the soil pores and the diameter of individual soil particles
are not constant—and changes occur in the hydrodynamic dispersion, water content, and
chemical-diffusion coefficient—it is highly unlikely that pure piston flow occurs under typi-
cal immiscible displacement or any other soil condition.

Hydrodynamic Dispersion

Hydrodynamic dispersion is a non-steady, irreversible process (i.e., the initial tracer distribu-
tion cannot be obtained by reversing the flow) in which the tracer mass mixes with the
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nonlabeled portion of the solution. This is due to the presence of flow through a complicated
system of pathways within the soil matrix. Hydrodynamic dispersion consists of two parts:
(1) mechanical dispersion (sometimes referred to as convection) and (2) molecular diffu-
sion. These two conditions are usually artificially separated, but in actuality are totally insep-
arable in form because both occur together; the dependence of each on different parameters
can vary due to changes in physical and chemical conditions, however. As an example:
mechanical dispersion is more prominent at high-water content and greater-flow velocities
because it is here that contaminant particles mix more freely with water within soil pores, as
that water meanders around individual particles. Molecular diffusion predominates at low-
water content and low-flow velocity since at this stage, chemical phenomena associated with
a tracer or contaminant continue, even though mechanical dispersion due to water move-
ment has ceased. Molecular diffusion alone takes place at the molecular level, in the absence
of motion (both in a soil and/or solution); dispersion occurs at the pore level. Hydrodynamic
dispersion is also generally associated with early breakthrough of the contaminant.

The causes of hydrodynamic dispersion are: (1) the range in pore size causes solutes to
arrive at the end of a soil column (used for an example) at different times; (2) transverse dif-
fusion into pores (especially stagnant areas) of some of the solute, while direct flow through
other pores causes solutes to arrive at different times; and (3) molecular (chemical) diffusion
ahead of the wetting front as it varies with time.

Soil structure affects hydrodynamic dispersion and the resultant shape of the break-
through curve in numerous ways. As particle size increases or the soil is aggregated, the
graphic representation of the breakthrough curve has more tailing due to diffusion into stag-
nant regions, but the effluent appears at the end of the column sooner due to larger pore size.
However, to get C/ C, = 1, a larger volume of effluent would be required, due to diffusion
into both the stagnant areas and into the tortuous path of large aggregates. Smaller-particle
sizes yield a more even distribution in pore size, which means there is less stagnant water, so
the effluent appears at a later time, and requires less volume for C/C, = 1 than for a soil with
large aggregates (see figure 10.4).

The symmetry of a breakthrough curve is due to the contribution of longitudinal dis-
persion and the narrow range in pore-water velocity distribution. This usually means the
medium is more uniform in texture and pore geometry. In such circumstances, it can be as-
sumed that no interaction takes place between the solute and the solid. However, due to
tortuosity of path, volumetric water content, and other parameters previously mentioned, we
do not normally expect a symmetrical breakthrough curve. When using extracted soil cores
(or blocks) to run tracer experiments, initiation of the breakthrough curve on the y-axis usu-
ally indicates flow along the interface between the extracted core and the encasement mate-
rial. This can bias results, so it must be corrected (see figure 10.5). :

The basic approaches used to represent hydrodynamic dispersion have been described
empirically by mathematics such as Hagen—Pouiselle’s law (discussed in chapter 6) and by
modeling, which is discussed in chapter 13. When using models, one usually conducts a field
or laboratory experiment to determine the effects of hydrodynamic dispersion by analysis of
breakthrough curves.

Mechanical Dispersion

Most dispersion is caused by the presence of solids through meandering soil pores of differ-
ent sizes that vary spatially, and are dependent on the statistical distribution of velocity of the
liquid. Dispersion takes place in two directions, longitudinal and transverse, with the greater
amount occurring in the longitudinal direction (along the flow line). Transverse dispersion is
smaller in scope, unless flow velocity slows enough for it to be equal-to, or greater-than lon-
gitudinal dispersion. At this point, however molecular diffusion normally dominates. The
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movement of the solute in each pore-channel depends on the deviation of path, length of
path, and pore size. With larger pores, we obtain a more rapid and wider range in liquid ve-
locities through the soil. The hydrodynamic-dispersion flux is written in the same form as that
for molecular diffusion (Bear 1972), and can be expressed by

ac

i (10.3)

Jy=-D
where Dy is the hydrodynamic dispersion coefficient (L*T™'), C is the concentration M
L™), and z is the vertical distance (m). This coefficient is considered proportional to pore-
water velocity, v, that is, g/ (Biggar and Nielsen 1967; Bear 1972), and has been expressed as
Dy = av, where « is the dispersivity (cm). The dispersivity depends on the length of path
over which the water flux and solute diffusion is averaged. It is also an important calibration
tool for dispersion in many models.

Molecular Diffusion

At low pore-water velocities, solute transport is dominated by diffusion. Molecular diffusion
is best described by Fick’s first law:

dC

Tpi = Dy (10.4)
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where D, is the molecular-diffusion coefficient (L?T!). Thermodynamically, the gradient in
chemical potential is the driving force for the diffusion process. As water content decreases
in a soil, molecular diffusion predominates over mechanical dispersion, since dispersion is
dependent on flow velocity. In a soil with uniform pore-size distribution but low hydraulic
conductivity, molecular diffusion is predominant as flow velocity approaches zero.

The larger the diffusion coefficient, the more completely the incoming solute mixes
with stagnant water in immobile zones and as a consequence, its appearance in the effluent
is delayed (Biggar and Nielsen 1962). When a breakthrough curve shifts to the left it is be-
cause of incomplete mixing and lack of fluid displacement. The further to the left the curve
shifts, the smaller the volume of resident water that is displaced. This lack of displacement
can be caused by: (1) large aggregate size causing an abundance of immobile (stagnant)
water present in the medium (i.e., pore-water velocity is zero); (2) the exclusion of a solute
due to solute—solid interactions; and (3) sometimes by increased solute concentration, which
can cause incomplete mixing of the solute with the soil water and/or anion exclusion.

A breakthrough curve is shifted to the right due to: (1) the displacing fluid or its solutes
are retained, either by precipitation or exchange; (2) chemical reaction of the solute or solid;
and (3) exchange of the solute with the solid phase of the medium. Essentially, adsorption of
the solute to the solid phase is often the driving force that affects curve shape. As a result, the
tracer does not reach the end of the column until adsorption sites are filled. In the case of
large soil particles or aggregates, (such as probably occurs under no-till agricultural condi-
tions), the solute has to desorb back into solution in order for transport by mobile water to
occur. Unless there is a significant recharge event, solutes diffused into these aggregates are
transported solely by diffusion. The shape of the breakthrough curve is not determined by re-
tention alone, but also by how chemical and physical processes are coupled with microscopic
velocity distribution or other processes.

Relation of a Breakthrough Curve to the Solution of the ADE

To arrive at a representative solution to the advection—dispersion equation (ADE), we need
to know initial and boundary conditions. For a typical core, the boundary conditions would
be as follows: Top Boundary C(0,t) = 0 for t < 0; C(0, t) = C, for t > 0; Initial Condition
C(x,0) = 0; Bottom Boundary (semi-infinite media) C(0,7) = 0 for ¢ = 0. With these bound-
ary and initial conditions, a solution can be obtained for the advection-dispersion equation
3*C d€ "8C

Za—zz—’l)z¥=§ (10.5)
where D, is the hydrodynamic dispersion coefficient in the longitudinal direction (assumed
vertical, z, in this case) (LT '), C is solute concentration (ML), v is the average linear
ground water velocity LT !, and ¢ is time (7). The solution for the ADE, given for the above-
listed boundary and initial conditions is

C@®) 1[ (z & w) ('vz) (z + vt)jl
——= = —| erf + — | erf = 10.6
EEivgl e e O ugo)
where erfc is the complimentary error function. When D, z, or ¢ is large, the second term on

the right-hand side of equation 10.6 is negligible. With this solution, we can compute the
shape of a typical breakthrough curve for a medium for which the solution is appropriate.

A General Solution for Dispersion of a Displacing Solute Front

At this point we assume a column of saturated soil to which we will apply a solution with
concentration, C,, of bromide. Within the column (initially) there is no bromide; however, at
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x; < 0 a bromide solution is applied to the end of the column, yielding a boundary-value

problem such that

aC e

i D(B?) (10.7)
1 1§

Using the previous discussion, the initial conditions for the column are f(u) = C (xp 1) = C,
for x; <0 and ¢, = 0; also, f(u) = C(xy, ;) = 0 for x; > 0 where ¢, = 0. The limit as X, ap-
proaches infinity is expressed as lim C(x;, ;) = 0 for 0 < x; < @ and 0 < t, < =, If one sets
C(x;, 0) = C, and institutes the initial conditions for x; < 0, then equation 10.7 can be ex-
pressed mathematically as

i 1 i — 0 — w)?
C(xy, 1) = D, f_xCO exp [ 4Dr, ] du (10.8)
To solve this equation we need to develop an error function, erf. To begin, we must change
the variable of integration from u to (x; — u)/[2(D1)*®] (this is the square root of the nega-
tive exponent of e). The next step is to determine the limits of integration by letting u = 0 and
u = —o,in order to determine the upper limit such that x,/[2(Dt,)*°], with the lower limit as
infinity. For equation 10.8 we must change du to d(x; — u)[(Dt,)*”] and from the relation

Xyl du
d| == = - 10.
[W—(Da)} 2Dy, e
we must multiply du in equation 10.8 by —[2(D, D,)*°]~! and must also multiply the complete
integral by —2(Dr,)*, to avoid changing the value. Upon completing these steps we obtain

T2 —(x; — u)z} [(x1 = u)]
2vaDrt, ), 2vDr, (0P [ ar, | % 2vDs, L)

The last term on the right-hand side of the equation disappears upon integration and, as be-
fore, we need to assign a dummy variable to it, denoted by , that, upon limit interchange,
yields

Clxp, 1) =

0

e il o
) = = f 1/(2\/1)7)Coexp( ) dB. (10.11)

This will give an erf in the form

Teeili o ! 5 w/@VDR :
Cut) = 3G e (-#)ap—= [ e (-grag]  qon

where the error function, erf, is typically written as
2 z
erf () = = fo exp (- B°) dB (10.13)
The typical properties associated with the erf are erf(—z) = —erf(z), erf(0) = 0, and

erf(») = 1. The values associated with erf(z) range from 0 to +1 for erf(z) and 0 to —1 for
—erf(z). Using the property erf(«) = 1 in equation 10.12 we obtain

1; Xq
Syt il 10.14
Clxity) > Co(l erf [ZVD_IID (10.14)
This equation is for the moving-coordinate system; for the fixed-coordinate system we write
C(x, 1) 1< {x N vt])
2 = (1 — erf 10.
G, > 1—er 2Dr, (10.15)
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In addition to the standard error function, erf, there is also erfc, the complementary error
function. It can be determined by erfc(z) = 1 — erf(z). For values of erf(z) and erfc(z), see
appendix 3.

Although this form is mathematically adequate in describing what is happening in a
soil, it is not easily used to plot a breakthrough curve because it does not reflect the relation.
The form is easily changed by introducing the Darcy velocity (discussed in chapter 7) and the
pore-volume concept. For example, consider a soil column of fixed length, L. The Darcy ve-
locity (also called the flux, g) is simply the quantity of flow, @ (L*/T), divided by the cross-
sectional area, A (L?). However, in a soil, a particle of water moves faster than the bulk water
standing over the soil. Consequently, the average linear velocity is written as ¢ = (QA™/6),
where 0 is the liquid-filled phase of the soil. The pore volume, PV; of the medium can be writ-
ten as PV = 6V, where V, is the total volume of the column. For a given duration, a number
of pore volumes, N,,, will pass through the column, which is written as Npv = Qt/PV, and
can be rewritten as N, = Qt/6V,.We divide both sides by the area, A; by substituting LA for
V,and using g = Q/A, we have N, = gt/ L, which lets us express C(x, )/ C, in terms of PV.
Now, by letting L. = x, we can rewrite equation 10.15 as

ey 1 =) |
i Bl gl ST e ;
@87 - [Py, o)
qL

Also, equation 10.16 cari be written in terms of the erfc function since erfc = 1 — erf; simply
substitute erfc into the equation where appropriate. If the reader wishes to find the solution
for the dispersion of a “slug” (i.e., a volume of fluid per area of x,/L) in a similar fashion to
that described above, it yields

Loz
Cr,H 1 f1+L Npw 2 LY, i
c, "2 er ; DN, er : DN, (10.17)
qL qL

Determining the Error Function

Essentially, there are two ways to calculate the error function: (1) from tables of error func-
tions and (2) from tables of related probability integrals, which are easier to find and are
more common. We can write the normal probability integral as

N(z) = % foz exp <_w72> dw (10.18)

Using equation 10.18, one can substitute w/V?2 for 8 in equation 10.13 such that

V2z 2
erf(z) = —\/%jo exp (—%—) dw (10.19)

Consequently erf(z) = 2N(V2z) or 2N(1.414z). As a result, N(z) is simply the area under the
curve which from standard rules of calculus can be written for this case as

%)
exp |~ 5"

OB Sy (10.20)
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QUESTION 10.1
Using the relation erf(z) = 2NV2z, find erf 0.90.

QUESTION 10.2
What is z when erf(z) = 0.797?

Calculating the Displacing Front of a Breakthrough Curve

In order to calculate points on the breakthrough curve we need to know the number of pore
volumes that have eluted through the column, N, D, g, and L. We begin by using the defin-
ition of the error function (equation 10.13) and substituting w?/2 for 82 (as before) from the
definition of the probability; then equation 10.16 can be rewritten as
Clx, t 1 1 (1-N,,)/V2DN,,/qL 2

0 _1_ exp (—3”—> dw (10.21)

@, 2. NIl 2
With this equation, we plot a breakthrough curve; however, to determine D in the equation
the derivative must first be obtained (we show later that there is a simpler way to obtain D).
To save time and space, a few steps are skipped and the derivative dg/dp is expressed as

i - 527

qL 2 2DN,,
dq qL
Sy 10.22
dp (2DN,,) ( )
qL
Letting the number of pore volumes equal one (1) and substituting, we may write

C(x,)

d[_dio_] i [2 \/Z:IL)F (10.23)

Now, we may set the left side equal to S and solve for D (the dispersion coefficient), which is
expressed as
_ 9L
47S?

In summary, we know both L and g from experimental measurement where g = (Q/A)/6.
Consequently, to determine the diffusion coefficient, D, we need to measure the slope, S, at
N,, = 1 of the breakthrough curve; measure C(x, r)/C, versus N,,, which is set equal to the
derivative of the left-hand side of the equation 10.23; and solve for D.

(10.24)

QUESTION 10.3

You are running a column experiment in the laboratory. The column measures 125-cm height by 50-cm
diameter. Determine D given that Q = 2810 cm hr™, § = 0.45 (water-filled porosity), and S (slope of
C/C)atN, = 1.
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QUESTION 10.4

How would you find the derivative of C(x, t)/C, with respect to Nl

Calculating the Concentration in a Moving Slug of Fluid for a Breakthrough Curve

By rewriting equation 10.17 in terms of the normal probability integral we obtain
1+ (xy/L) = N,,J/VZDN,,/qL

Cln it [ 2
Ce0 _ 5 f oD (_£> S
C, 0 2
[(1-N,,)/V2DN,,/qL] B, (10.25)
N f exp (—7> dw
0

This will allow one to find a moving front (or slug) of fluid. Without working out the deriva-
tion, the diffusion coefficient (D) for this equation can be determined, after Corey, Nielsen,
and Kirkha (1967) such that
ot{at)
2L

0 e e (10.26)
+ 20,2
2(1 2L>z

where x,, is the volume (mL) of the slug, V,, added to the medium. Thus, x, = V,/A8, where
A is the cross-sectional area of interest. The value for z may be determined by

5)
g~ \/ZD(lz—fxo)/Z (10.27)
qL

or in evaluating the maximum C(x, )/ C, by changing the limit on the second integral from
—z to z, adding both integrals, and dividing by 2 so that

{€58) - [l 3
2< c, max—\/_27r J;exp > dw (10.28)

Thus, to find D, measure C(x, t)/C, at its maximum value on the breakthrough curve, divide
by two, and set it equal to the right-hand side of equation 10.28. As a result, when the maxi-
mum value of [C(x, £)/C,] is divided by two, we go to the table of normal probability func-
tions to find z; this allows us to solve equation 10.26. Once D is obtained, equation 10.25 can
be used to plot the breakthrough curve. We discuss procedures for determining D through
experimental methods later in this chapter.

Thus far, we have considered only dispersion as the mixing process and have neglected
diffusion. In discussing this parameter we assume that the viscosity and density of all fluids
within the system are the same, and that the dispersion coefficient is independent of solute
concentration. However, the discussion has served to introduce miscible-displacement math-
ematics. Later, in question 10.7, the student is asked to derive the ADE. Considering the
answer to the question (in one dimension), the solution can be expressed as

Gl s B 1+ N,

——= |+ ex <£) erfc
@ rd , DX, 5 DN

(10.29)

D
pv pv
qL gL
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As before, D can be found by equating the slope of the breakthrough curve at N, e Ltothe
derivative of equation 10.29, with respect to N, evaluated at N,, = 1.Thisis done in the same
method as before, by converting equation 10.29 to the normal probability integral to find that

_ gL
47rS?

(10.24)

Similar to previous solutions, once D is obtained, known values of g and L can be substituted
into equation 10.29 and one can plot C(x, £)/C, versus the number of pore volumes, N EOT
a soil that has a low-flow velocity, a diffusion model can easily fit the experimental data. For
a high-flow velocity, a dispersion model fits better. This is logical, since D depends on fluid ve-
locity. In this case, D is described by the diffusion coefficient in the diffusion model, and the
dispersion coefficient in the dispersion model; however, remember that the two are essen-
tially inseparable. Some of the original research evaluating this topic (Nielsen and Biggar
1962) indicates that for soils with a wide range of microscopic-pore velocities (typical in the
unsaturated zone), the use of an average-flow velocity in the model can cause deviations
between the experimental curve of the data versus the theoretical curve of the model. This is
primarily due to: ion adsorption and exchange; rate of diffusion; pore geometry; chemical
reaction; precipitation; incomplete mixing of solute with solution; aggregate size, as well as
other physical and chemical factors. All of these parameters affect the dispersion coefficient
D and thus, can affect the appearance of the first detectable concentration, the shape of the
breakthrough curve, whether the breakthrough curve is shifted left or right, and/or the out-
come of the modeled solution.

The mathematical models presented here have made several simplifying assumptions.
Despite assumptions, however, using mathematical or analytical models for comparison to
experimental data can provide information and insight about a soil. If the models accurately
predict the results of an experiment, one can reasonably assume that the hypothesis used for
the model works well for both the medium of interest and the solute being investigated.
However, solutions for a specific soil or medium type are not always readily transferable to
another chemical solution or medium.

Figure 10.6 shows a comparison of a numerical solution using the United States Geo-
logical Survey program VS2DT (Healy 1990) versus an analytical solution. Using a soil col-
umn of 35-cm length, water flowing into the column is maintained at a concentration of C,
for 160 s, after which the concentration is set to zero for an additional 320 s. Figure 10.6 shows
that the numerical results of VS2DT produces a good match, with analytical results at a dis-
tance of 8 cm for the column inlet at all times for steady water flow, and both first-order decay
and linear sorption for three different cases of decay and sorption.

QUESTION 10.5

What is the derivative to equation 10.29?

Calculation of the Dispersion Coefficient (D)

To simulate transport through soil practically, the effective dispersion coefficient D should be
determined—usually in the longitudinal direction. The dispersion coefficient is often calcu-
lated for a homogeneous medium and normally, determination of D is accomplished with the
use of packed laboratory columns and intact cores for the medium of interest by “trial and
error.” Once the solute concentration of the resident solution in the column is known, a feed
solution of the same relative concentration, but containing a different solute, is leached
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through the column. The dispersion coefficient is then determined as a function of time, dis-
tance, and concentration. When using packed columns, they should be uniformly packed so
as to avoid layering, to ensure homogeneity. This helps prevent macroscopic variations in
water content and pore-water velocity, which can result in additional spreading. Uniform
packing also allows the use of a constant “effective” pore-water velocity for the experiment.
Viscosity and density differences between resident and feed solutions during mixing are usu-
ally avoided in this experiment, because these differences can lead to fingering. As a result,
low concentrations of a conservative tracer (i.e., bromide or chloride) do not affect the den-
sity and the viscosity of the solvent. Biggar and Nielsen (1964) show that fingering dominates
for a density difference of 3.4 X 107 g cm™! and a viscosity difference of 0.003 cP, obscuring
the effect of molecular diffusion.

There are also other factors to consider in the determination of D. One is gravity seg-
regation, discussed in detail by Rose and Passioura (1971b). However, this is more important
in cases of saturated flow and saltwater intrusion, in which contaminated salt/water intrudes
horizontally into a fresh-water aquifer. Since permeability k decreases rapidly during the de-
saturation process, gravity segregation is of little consequence in unsaturated-flow condi-
tions. The reader is referred to Scheidegger (1974) for an in-depth discussion of gravity
segregation. A major factor to consider is apparatus-induced dispersion. This is critically im-
portant when short columns are used under unsaturated-flow conditions. In the event of lay-
ering caused by insufficient mixing during column preparation, D can be as much as 40 per-
cent less than obtained with a one-layer equation. This is because mixing is assumed to occur
in the medium only, but in actuality it occurs in the “dead-volume” inside the column, but
outside the medium. Thus, packing to reduce the “dead-volume” and obtain homogeneity is
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crucial. Also, by measuring concentration with depth as well as in the effluent, we obtain a
more accurate D than by simply measuring concentration in the effluent alone. Measure-
ments of concentration within the medium can be obtained from samples collected using
suction lysimeters, or by measuring electrical sensitivity at a point in the medium with a
conductivity probe if using salts such as sodium chloride.

The dispersion coefficient is often determined as a function of position at a certain time
using an analytical inverse solution to the ADE. It can also be determined for varying time
at a given depth. One method for determining D was given in equation 10.24; in this section
we discuss other methods to calculate D. The one-dimensional ADE (equation 10.5) was
used by Fried and Combarnous (1971). Assuming a longitudinal dispersion coefficient, an ap-
proximate solution to equation 10.5 can be written as equation 10.15. For a given time, the so-
lution follows a normal distribution 1 — N[(x — w)/o], with a mean displacement . = vf and
standard deviation o = (2Dt)*°. The term N[ ] is the probability-density function (PDF) for
a normal distribution with values N[—1] = 0.16 and N[1] = 0.84, as suggested by Lapidus
and Amundson (1952). The width of the transition zone, 20, can be determined by plotting
C/C, versus x (depth) such that

20 = Xg16 ~ Xog = V8Dt (10.30)

where x5 and xg, are the positions for which C/C, is equal to 0.16 and 0.84 respectively.
The longitudinal dispersion coefficient can be calculated by

2
Xoea — X
DL - ( 0.84 0.16) (1031)
8t
For concentrations at a certain position as a function of time, we have

1| x — ot X — Vtyg, |?
e e 016 _ 0.84:| 10.32
h 8[ Vipie Vipg4 ( )

While Fried and Combarnous (1971) discuss how the transverse-dispersion coefficient can be
determined, very little other research has been done to that end.

Rose and Passioura (1971a) used the Brenner number, B (B = vL/D; L is column
length) and determined D by plotting C, = [(C — C,)/(C, — C,)] versus In PV on probability
paper where C, is the exit concentration (dimensionless) and PV (pore volume) = (vt/L).
Nearly straight lines for particular values of B were obtained. Due to this linear relation we
have

erfc!2C, -~ 1) = —mIn PV — B (10.33)

where m is the slope and  is the intercept. Rose and Passioura (1971a) also developed the
following relation for 16 < B < 640:

log B = 0.1139(log m)> — 0.3504(log m)? + 2.3623(log m) + 04732 (10.34)

By plotting —In PV versus erfc™!(2C, — 1), the slope m and the intercept B can be deter-
mined. The Brenner number B can be obtained from equation 10.34; D can then be obtained
using the relation B = vL/D.Van Genuchten and Wierenga (1986) use a slightly simpler ver-
sion of equation 10.34.

Another method for obtaining D is by curve-fitting or least-squares analysis of the
effluent curve. One of the more popular programs for determining D is called CXTFIT by
Toride, Leij, and Van Genuchten (1995). These researchers use a nonlinear, least-squares in-
version method to determine the dispersion coefficient, the retardation factor (R), and first-
order degradation constants. This type of program is most useful on column-breakthrough
experiments involving concentrations at fixed locations at different times, or for a specific
time at different locations.
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Additional methods for obtaining D involve the calculation of D from concentration
versus distance curves, and the Boltzmann transformation. To obtain D in a concentration
versus distance scenario, we simply section laboratory columns at specific distances or deter-
mine the solute concentration in situ in the field. The resulting equation for this method,
given by Van Genuchten and Wierenga (1986),is D = R/4mt S% where R is the retardation
factor (the complete form is shown later, in equation 10.93) and S is the slope of the experi-
mental curve where the solute concentration is 0.50, or by calculation of the slope (B)
D = R/4pB%. Note that in expression R = vt/x,, x, is the value (distance) of x where the rel-
ative effluent concentration equals 0.5, and v is the average pore-water velocity. In using the
Boltzmann transformation to transfer the partial-differential equation into an ordinary
equation, we assume the dispersion coefficient to be dependent mainly on water content be-
cause of the relatively low velocity, the small value of the Peclet number, and the rapidly
changing water content during infiltration. ;

The process of dispersion depends on several things: water content; molecular diffu-
sion; velocity; viscosity; density; and hydraulic conductivity. To determine the influence of
pore-water velocity and particle size, data are commonly analyzed by plotting D, /D, versus
P (the Peclet number) where % = vd/ D, on log-log paper. For such cases, d is a characteris-
tic pore-size or particle-size dimension similar to that used in scaling (see chapter 16). Using
the Peclet number, Bear (1979) designates the following dispersion regimes: (1) molecular
diffusion is dominant when % < 0.4; (2) molecular diffusion and mechanical dispersion are
of the same order for 0.4 < % < 5 and thus, additive; (3) major mechanical dispersion occurs
with some molecular diffusion in the range 5 < % < 1000—there is interference in these ef-
fects and they cannot be added; (4) mechanical dispersion is dominant for 1000 < ® < 1.5 X
10° with negligible molecular diffusion; and (5) mechanical dispersion occurs when the flow
regime is out of the domain of Darcy’s law ( > 1.5 X 10°). As a note of caution, however, if
we use experimental values for D, the solute front will exhibit additional spreading when
solving the ADE by numerical methods. This computational artifact is called numerical dis-
persion and is most prone to occur directly around the front when using high values for P.

10.4 NONREACTIVE SOLUTES

Typical investigations of solute transport involve the movement of a conservative tracer
through a medium that is both isotropic and homogeneous. A conservative tracer is one that
does not react or interact with the medium, and which is completely miscible in the pore-
water solution. The most commonly used conservative tracers are chloride and bromide
(generally as KBr, and KCI or NaCl). If we assume no source or sink terms, the conservation
of mass at a large scale (or what is termed a macroscopic scale) may be mathematically de-
scribed as

36C

===~V [l £ Cl=~YJ

s

(10.35)

where 6 is the volumetric water content (unitless), C is solute concentration (ML™3), ¢ is time
(T), Jy is flux due to hydrodynamic dispersion that includes both dispersive and diffusive
fluxes (ML™2T ™), Ju is the volumetric-flux of the influent (L>T 1), J, is the total-flux of the
solute (ML™2T!), and V - (pronounced nabla dot) is the divergence (L1).

Based on Fick’s first law, the autonomous flux J pis given in equation 10.3. However, hy-
drodynamic dispersion is written as

Dy(v, 6) = av + D(6) (10.36)

where « is the dispersivity (L), sometimes called the mass-transfer coefficient; v is the aver-
age advective pore-water velocity expressed as v, or g/0 where g is the Darcy flux (LT71); 0 is
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the volumetric water content; and D, is as described in equation 10.3 written here as a func-
tion of water content (¢). The left term on the right-hand side of equation 10.36 is often
termed the mechanical-dispersion coefficient (D,,). Rewriting equation 10.3 and substituting
equation 10.36, we obtain
: aC
Jp=— ODHEE (10.37)
where Dy, is the hydrodynamic-dispersion coefficient (L2T~") and z is the vertical distance
(L). Dy now represents the random effects of both molecular diffusion and mechanical dis-
persion.

By using the relation between Darcy’s law and pore-water flux (J, = v8), we can sub-
stitute equation 10.37 into equation 10.35 to obtain the one-dimensional transport equation
for steady-state conditions; here we assume that v (average velocity) and 6 are constant with
depth, z:

a0C 9
a oz
We shall now drop the “H” on D, and refer to it simply as D. Because 6 is constant, the equa-
tion may be simplified to equation 10.5 by dividing through by 6:

o _PCacC

g = 1

ot 9z 9z

This is a linear, parabolic, second-order partial differential equation in which both v and D

are independent of z and ¢ (Risken 1984). For anisotropic, multi-dimensional flow, equation
10.5 can be rewritten

{HDH(U, 9) % = vec} (10.38)

(10.5)

TES T e T
<o [ } el (10.39)

IR o SR 9z;
where D;; is the dispersion tensor and i, j are direction indices (Smith 1985).

Equation 10.5 is most useful for laboratory investigations in which packed columns are
used to control: soil heterogeneity; structural differences; cracking; shrinking; swelling; and
biological activity. For these conditions, equation 10.5 can be used to describe most of the
phenomena represented in figure 10.1 (Bresler 1973a; Cho 1971; Cushman 1982; Robbin
Jurinak, and Wagenet 1980 a, b; Van Genuchten and Cleary 1982).

10.5 SORPTION REACTIONS

When pesticides and other organic chemicals are applied to soils, the solutes do not act as a
conservative tracer due to electrical-charge differences between the exchange sites in the soil
matrix and the applied contaminant. For example, most soils found in the United States have
a negative net charge; thus, the application of a pesticide or other organic compound would
display reactive properties—that 1s, normally, the contaminant would be strongly bound to
soil particles in the upper profile. However, many types of soil in various parts of the world
contain variably charged soils (Sumner 1992) such as hydrous oxides and aluminum and iron
sesquioxides, almost all of which exhibit ion-exclusion and adsorption phenomena. In the
process of anion exclusion, negatively charged anions are repulsed from the negatively
charged surfaces of soil particles, which results in more rapid flux of the anions. Conse-
quently, breakthrough curves that exhibit anion exclusion are generally shifted left, that is,
initial breakthrough occurs earlier than if no anions were present. While this phenomenon is
commonly associated with the application of a conservative tracer like potassium bromide
onto net-negative soils, it is also seen with the application of various reactive contaminants
to variably charged soils, where the contaminant and soil can have a net positive charge.
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Generally, a tracer (or chemical) that is applied intentionally to the soil is present in a
single liquid, non-sorbed phase. Assuming the processes of adsorption and desorption apply,
equation 10.35 can be written as

d
S 16C+Cl=-V [, +4,C] (10.40)

where C, is the concentration (M L) of the adsorption-precipitation phase. Equation 10.40
can be rewritten as

ad d aC dv 6C
Z16C+ ¢ = —{De~] o
ot ad 9z 9z

. (10.41)

There are three common types of adsorption isotherms for which the ADE has been
written: (1) linear; (2) Freundlich; and (3) Langmuir. Gupta and Greenkorn (1974) give the
following expressions for the ADE with regard to each isotherm.

Linear:
K,]aC o4 aC
e et e _
[ 9] ot a2 oz i
Freundlich:
nk aC 9*C aC
1+——2c"*1}—:D—- — :
[ 0 ot a2 ¥ oz =5
Langmuir:
a aC 9°C aC
+—|—=D——= —p—= ;
[ o(1 + bC)z} ot a2 ez 0a)

where a, b, K, and n are empirical constants. The amount of chemical adsorbed in mass-per
gram of soil in a solution with a known equilibrium concentration (C) in mass per volume,
can be calculated by S = KC", where K is the adsorption coefficient and S can be expressed
as the source/sink term. The exponent n may be taken as: (1) 1.0 if a linear isotherm is ex-
pected; (2) 0.87 if a nonlinear isotherm is likely (0.87 is an average of 26 pesticides as
reported by Lyman, William, and Rosenblatt 1990); or (3) any value that has empirical basis.
For case 3, we consider measured values for similar compounds to that being investigated.
Scientists typically investigate linear isotherms as a first choice because of simplicity. How-
ever, for accuracy, nonlinear isotherms are preferred.

Due to the source/sink term, S, there is a retardation factor, R, involved in the ADE.The
retardation factor is affected by soil-bulk density, volumetric water content, soil-adsorption
characteristics, and other parameters; we describe it in the following paragraphs. Initially, we
write (Sp,/0) which yields (ML~3), however, when multiplying by the volume, Vx Vy Vz, we
are left with total-mass adsorbed. The retardation factor for a volume basis is expressed by

as
(% ~ Ax Ay Az) = MT™! (10.45)

Substitution into equation 10.5 gives
208 3C_ #C,. viC

= P
G caat ot 872 9z (o-i0)

Because § = KC", application of the chain rule (and assuming n = 1) yields

a8 _ KaC

i > (10.47)
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Substituting equation 10.47 into equation 10.46, we obtain
pp K€  oC _ 5C _vaC

0 a a4 oz (S0
This can now be rewritten in terms of one dependent variable, as
RIC #*C waC
= p2L = :
ot 3z> oz ()
where
R= %K 4.1 (10.50)

R (retardation coefficient) is dimensionless. Thus, equation 10.49 is the ADE for one-
dimensional flow at steady state with assumption of reaction between solute and solid
phases. To obtain the slope of the exchange isotherm, we plot dS/dC. An exchange isotherm,
in which all parameters are typically held constant (except concentration), is the amount of
solute sorbed to the medium versus the amount of solute in concentration. This also includes
the physical and chemical parameters of both the soil and solution. Note that in the consid-
eration of a binary system, the amount of solute adsorbed S (usually written as ug adsorbed/g
medium), and the solution concentration C (ug/mL or ML), are fitted to the Freundlich
equation, § = KC", to determine the adsorption coefficient, K, and the parameter, n.

A principal difficulty in using the ADE for either analytical determination or numeri-
cal modeling is that it is often difficult to obtain values for the parameters used in the equa-
tion. The simplest method for obtaining these various parameters is to utilize regression
equations obtained from experimental data in log-log form. For a wide variety of pesticides
and other chemicals, Kenaga and Goring (1980) give the following equation to calculate the
adsorption coefficient:

log K,, = —0.55log S,, + 3.64 (10.51)

where S,, (water solubility) is reported in mg L™, In this instance, —0.55 represents the a con-
stant and 3.64 represents the b constant. Other equations reported by Kenaga and Goring
(1980), mainly for pesticides, are

log K. = 0.681 log BCF(f) + 1.963 (10.52)
and
log K. = 0.681 log BCF(t) + 1.886 (10.53)

where BCF(f) is the bioconcentration factor due to flowing-water tests and B CF(T) is the bio-
concentration factor using model ecosystems. Regression equations for other applications are
listed in Table 10.1 and in chapter 15.The adsorption coefficient, K (from the Freundlich equa-
tion: § = KC"), can be estimated from K, from the expression K = K_ (percent 0c)/100,
where K. = (ug adsorbed/g organic carbon)/(ug/mL solution). The adsorption coefficient K
isnot the same as K. The adsorption coefficient K. is the extent to which an organic chemical
partitions itself between the solution and solid phases in either unsaturated or saturated soil;
K, islargely independent of soil properties and can be thought of as the ratio of the amount of
chemical adsorbed per-unit weight of organic carbon (oc) in a soil at assumed equilibrium.

QUESTION 10.6

Estimate K, K, and § for dicamba. Assume a water solubility of 0.04 mg L™, organic carbon content
of 2 percent, and a solution concentration, C, of 10 mg L7
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TABLE 10.1 Regression Equations for the Estimation of K,

Eq. No. Equation* No." 7 Chemical classes represented
1 log K., = —0.541log S + 0.44 10 0.94 Mostly aromatic or polynuclear
(S in mole fraction) aromatics, two chlorinated
2 log K. = —0.557 log S + 4.277 15 0.99 Chlorinated hydrocarbons
(S in p moles/L)
3 log K,. = —0.544 log K, + 1.377 45 0.74 Wide variety, mostly pesticides
4 log K. = 0.937 log K,,,, — 0.006 19 0.95 Aromatics, polynuclear aromatics,
triazines and dinitroaniline herbicides
5 log K, = 0.94log K, + 0.02 9 1 s-Triazines and dinitroaniline
herbicides
6 log K, = 1.029 log K, — 0.18 13 0.91 Variety of insecticides,

herbicides, and fungicides

7 log K, = 0.0067 (P — 45N) + 0.237 29 0.69 Aromatic compounds: ureas,
1,3,5-triazines, carbamates, and uracils

Sources: 1. Karickhoff, Brown, and Scott 1979; 2. Chiou, Peters, and Freed 1979; 3. Kenaga and Goring 1978; 4. Brown and
Flagg 1981; 5. Brown, D.S. (personal communication); 6. Rao and Davidson 1980; 7. Hance 1969

*K, = soil (or sediment) adsorption coefficients; § = water solubility; K, = octanol-water partition coefficient;
P = parachor; N = number of sites in molecule which can participate in the formation of a hydrogen bond

"= number of chemicals used to obtain regression equation

" Not given

QUESTION 10.7

Derive Richard’s equation and then, beginning with Fick’s first law of diffusion, derive the general
ADE (commonly referred as the solute-transport equation) for one-dimensional, steady-state flow.

10.6 EQUILIBRIUM CHROMATOGRAPHY

Most solute-transport studies involve solute interaction with the solid phase, and for a ma-
jority of these studies, the solution is obtained numerically by utilizing experimentally, ex-
change isotherms that are determined. For most studies, it is assumed that steady-flow con-
ditions prevail and only two different ionic (cations) species are present during miscible
displacement; equilibrium chromatography is in this category. Following Bolt (1982), it is
convenient to express the adsorbed concentration S (which depends on the liquid concen-
tration of a specific species of interest) in moles-of-charge per volume of soil (mol, m~3)
while C is expressed in moles-of-charge per volume of solution (mol, m~?). To simplify the
calculation, we assume concentration is constant during ion exchange. If we neglect effects
due to dispersion and diffusion, a step-change in concentration occurs at the concentration
front, mathematically expressed as J,t/0; this is, actually the penetration depth. Because we
assume the concentration is constant during ion exchange and thus, time #, depends only
upon C for such, we rewrite equation 10.40 as

ds
( £ 9> LI (10.54)
at ax

For this case, dS/dC is the differential capacity of the exchanger for the exchanging ion, J,, is
the volumetric-water flux (LT '), and other parameters are as previously explained. The
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9C/ox term must be finite (assume negligible dispersive flux) to solve equation 10.54. Using
the chain rule of calculus and rewriting equation 10.54, we obtain

at ds
— 40
dc
Should the concentration profile exhibit a jump (i.e., the condition of the finite term is vio-

lated), the conservation of mass is expressed as

<a_x)c e (10.55)

(A j—g + ()AC) dx = AC dV, (10.56)

where V; is the input volume per unit area of the soil column. This also requires that equa-
tion 10.55 be rewritten such that

G (EJ: ) i
AC

Following our previous assumptions, the position for a specific concentration (both dS/dC
and 6 are homogeneous with respect to location and dV, = J,dt) is found by integration of
equation 10.55 so that

t s
ro= [ | =2 |ar = L= YO (10.58)
(G4
ol 45 (ﬁ + 0)
ac ac

where V(C) is the volume of solution applied to the column, at the instant that the concen-
tration at x = 0 reaches C. For a step-type displacement, V, = 0.For the adsorbed and liquid
phase, the average depth (position) of the concentration front is given by

S (ds
= 4
fq xc< = 0>dC
5 = e (10.59)
= 4
fq (dc 0) N

Thus, with the use of equilibrium chromatography we determine the propagation in the
adsorbed phase. In order to investigate the shape of the solute front, equation 10.58 is differ-
entiated (V,, = 0) such that

3 Vi ZSC
(_x> i s (10.60)
oC v <£ g 9)2
dc

Based on the previous discussion, three types of ion exchange are of concern here. These in-
clude linear (dS'/dC = 0), favorable or convex isotherm (d%S/dC? < 0), and unfavorable
(dS'/dC > 0). In the case of linear exchange, 9x/3C = 0 for any applied volume that indi-
cates the initial profile is not altered during fluid flow through the soil. However, in the case
of favorable exchange, there is a minor problem: according to equation 10.54, the slope of the
solute front is negative (4C/ax < 0), but by using equation 10.60, we see that 9C/dx > 0, im-
plying that the solute front migrates faster at high-concentration than at low-concentration—
physically impossible in the case of a step front. Thus, the rate of propagation should be
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calculated using equation 10.57. Also, if the particular case of interest is not a step change, a
sharpening effect typically occurs until a step front is actually established. Equation 10.60 in-
dicates that for an unfavorable exchange at a C of interest, the concentration front flattens
with increasing V; this produces solute spreading, or in simple terms, a decrease in the con-
centration gradient.

10.7 MATHEMATICAL MODELING OF TRANSPORT PHENOMENA IN SOILS

In the previous sections we discussed the basic physical processes and movement of solutes,
the types of fluid flow that occur in the unsaturated zone, breakthrough curves, and nonreac-
tive and reactive solutes. We now attempt to simplify the basic equations given thus far, with
separate discussions of the various equations used for longitudinal dispersion, dispersion of
a displacing front and a pulse, and various solutions and numerical calculations of these sim-
ple models, prior to discussing general solutions to the ADE.

Assuming that a fluid with an input concentration of C; is displacing another fluid of
equal density and viscosity, there are basically two coordinate systems. One system is the
moving-coordinate system of the fluid (Lagrangian method); the other, a fixed-coordinate
system of the medium that allows physical measurement at specific points (Eulerian
method). Without the fixed-coordinate system, it is difficult to measure between points
within the moving fluid. For simplification purposes we also assume a coordinate system with
space-coordinate x; and a time-variable of ¢,. The transformation to the moving-coordinate
system would be x = x; + vt; and ¢ = ¢, where v is the velocity of the moving fluid, which
also happens to be the velocity of the fixed-coordinate system. This allows for a fixed plane
in the moving (x;, ;) system. Since the plane moves at velocity v and initially was at the sharp
boundary (or interface) between the displacing and displaced fluid, the plane must always be
x; = 0 in the moving-coordinate system. We determine C(x;, t;) by the inverse such that
x =x, — t;and ¢, = tyields C(x, r). By assuming dispersion in a capillary tube (linear flow),

we have
aC
= —D|— .61
q <6x1> (10.61)

where all parameters are as previously discussed. Also, following the rationale and consider-
ing the area, as stated in the solution of question 10.7 (at the end of the chapter), longitudi-

nal dispersion is given as
aC #*C
1 1

which has the initial condition C(x, ;) = f(x;) for #; = 0. The general solution for the dis-
persion equation is expressed as

Cloap ) = 5 \/—tl f () exp[ (1Dt1 )}du (10.63)

This general solution is valid for —o < x; < . By treating u as a dummy variable of inte-
gration that disappears when the definite integral involving u is evaluated,

f@) = [C(x,,0)],—-y = C(»,0) (10.64)

This is the formulated initial condition. As a final-boundary condition, we have C(, ) = 0
for ¢, (finite) and C(x, %) = 0 for finite x;. Consequently, C(x;,0) = the concentration in the
capillary tube at time #; = ¢t = 0 and at x; = x for which x; = x is the starting position in the
capillary tube of the fluid pulse that moves with dispersion; C(x, t;) depends on C(x,, 0).
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QUESTION 10.8

Beginning with the longitudinal-dispersion equation 10.62, derive equation 10.63, the general solution
of the one-dimensional dispersion equation.

10.8 FURTHER SOLUTIONS TO THE ADE: INITIAL AND BOUNDARY CONDITIONS

To obtain a solution to the ADE, we must select the appropriate initial and boundary condi-
tions of the given transport problem, necessary and sufficient to guarantee a unique solition
to the transport equation. Three types of boundary conditions are normally used in solute
transport. These are: (1) the Dirichlet condition (boundary condition of the first kind), in
which the value of a dependent variable is specified at every point of a boundary—some-
times referred to as a constant head or constant pressure boundary; (2) the Neumann condi-
tion, boundary condition of the second kind; in which the gradient of the pressure and gradi-
ent of the piezometric head are imposed on the boundary—sometimes called a constant-flux
boundary; and (3) the Cauchy condition (boundary condition of the third kind), a mixed
boundary condition in which the state variable of piezometric head and its gradient are im-
posed on the boundary. Also, a solution to the ADE has to consider the necessary source
functions and constitutive relations. In addition to the initial and boundary conditions we
also have to consider the types of concentrations the posed problem deals with. The typical
concentrations used in transport phenomena are: time-averaged; volume or spatial averag-
ing; and flux-averaged concentration. Mathematically, the time-averaged concentration C is
expressed as

SR it to+(8t/2)

Clxy.z,t) = j Clx,y, 2, 1) dt (10.65)

14— (8t/2)

The spatial-averaged concentration (microscopic in this instance) is expressed as

Cdv
= . A
Cv(xo’ Yo> 205 t) 7 gngvl i%_ (1066)
dv
Av,
where C, is the volume-averaged concentration, Av is the soil volume of interest, Av; is the
volume of the liquid phase in the Av, dv is the (microscopic) differential-volume element,
and bv is the representative elementary volume; all measured in L3, The coordinates %05 Vos
and z,, are positions that are fixed at the center of the medium of interest. A representative
elementary volume (REV) was defined for soil by Lauren et al. (1988) as a rule-of-thumb
requiring a measurement area to contain at least 30 peds in cross-section, in order to be rep-
resentative of a soil. This represents an estimate based on a morphological soil-structure
analysis; the sample volume is primarily a function of soil structure, not the type of extraction
device used to obtain an in-situ sample. The flux-averaged concentration (at a position of in-
terest), C;, is expressed as
7

Ci(t) = i (10.67)

v

where the flux-averaged concentration represents the mass of solute per-unit volume of fluid
passing through a specific cross-section for a specific time interval. Often, solute-flux distrib-
ution is of greater interest than pore-fluid concentrations (Parker and Van Genuchten
1984b). The basic relation between flux-averaged and volume-averaged concentrations is
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expressed as

— —= DaC,

C,=C, P (10.68)
It is important to be able to distinguish between volume-and flux-averaged concentrations
during an experiment as well as during data analysis. Most research typically expresses con-
centrations during transport as volume-averaged concentrations denoted by C, and not nec-
essarily by C,. .

We use a column of soil as an example for selecting initial and boundary conditions. To
solve the ADE for transport through our column, we need to select the inlet and exit bound-
ary conditions and initial condition; following Van Genuchten and Alves (1982), we write the
initial condition as C(x, ) = f(x) forx > 0 and ¢t = 0 where f(x) is an arbitrary function. The
boundary condition at x = 0 for the Dirichlet problem is expressed as C(x, ) = g(¢) forx > 0
and ¢ > 0. For the Cauchy problem (third type), the boundary condition is expressed as:

<—D ﬁg + vC)
ax

For this expression, g(¢) is also an arbitrary function that describes the concentration of the
influent.

Continuing to use our column as an example, the exit-boundary conditions can be de-
scribed for a column of finite length or a column of semi-infinite length. For the finite-length
column, the exit-boundary condition that must be satisfied is

(—D E + vC)
0x

where C, is the concentration at the exit, which we assume equals C|,,,. As a result

[9C/ax](x,t) = 0 for xTL and ¢ > 0. For a semi-infinite column the exit-boundary condition
can be expressed as [dC/dx](x,t) = 0 for x — « and ¢ > 0.

Analytical solutions for both conditions are similar. A mathematical solution for the
Cauchy problem yields a conservation of mass-type equation and is therefore preferred for
the inlet-boundary condition. A transition zone develops when the fluid moves through the
soil column, that results in a fluid-concentration variance from the influent concentration.
This occurs because the influent is not well mixed, which results in a boundary layer outside
the medium. Thus, a certain amount of time is required for equilibrium to be achieved. Al-
though the initial-boundary conditions given for the Dirichlet problem (first type) imply
equal concentrations in both the medium and influent, this is not the case at first because the
influent solution can only be injected at a specific rate. As a result, we have a displacement
experiment which involves a step change in concentration such that (g(¢) <0) = 0 and
g(t > 0) = C,, and a Cauchy-type condition should be used as

(—D E + vC)
0x

where C, is the influent concentration. We are also aware that a discontinuity in C across the
inlet boundary increases with increasing D /v. Solutions that are subject to first-type bound-
ary conditions generally lead to flux-averaged concentrations, while solutions subject to the
third-type (mixed or Cauchy) lead to volume-averaged concentrations.

Using this basic information we determine several analytical solutions for various inlet-
and exit-boundary conditions. If we assume an infinite system (—o < x < %), a solution for
the general ADE (equation 10.5) can be obtained (by making a coordinates-transformation

=vg(t) t>0 (10.69)

x10

=vC, >0 (10.70)

xtlz

= vC, (10.71)

x10
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so that ¢ = x — of and 7 = £) which will transform equation 10.5 into
| Smngeac o)

e
which has the original boundary and initial conditions of C = C,for x > 0 and ¢ < 0;x — o
and ¢ > 0;also,C = C forx <0and¢ < 0;x — —o and ¢ > 0. These must be transformed as

well. If we use an alternative transformation, then

(10.72)

X = WL

which yields an ordinary differential equation, such that
@ dcC
— + 2 — = .
A2 & dE 0 (10.74)

This equation has transformed initial and boundary conditions where C = C; for ¢ — % and
C = C,for ¢{ - —oo with the solution

g (C ik Ci) T l
E = = erfc & (10.75)

We need to remember that coordinate transformation is not always convenient, and may not
work for other types of boundary conditions.

Van Genuchten and Alves (1982) and Carslaw and Jaeger (1959) have shown that
Laplace transforms can be an efficient tool for solving equation 10.5. Table 10.2 gives some
analytical solutions for several inlet-and exit-boundary conditions.

TABLE 10.2  Analytical Solutions for Various Inlet and Exit Boundary Conditions (R assumed constant)

Exit boundary
Inlet boundary condition conditions Analytical solution for selected boundary conditon
2vL [ 4os (B,,,x) i vL 9 (B,,,x)} 2 {v_x i vt 3 ,B,Z,,Dt}
aC oD Bn| B © L 2D . b4 P 2D 4DR L?R
vC, =(L,y=0 c=1-
z A eyl ]
o 2D D - 2D
B.D , vL
Py + _— =
Bnl COt (Bln) UL 4D 0
. /3,,,x> [ v Banz]
aC = 2P S‘“( L )20 " 4DR T LR
= (L) =0 c=1-
ox = 3 (’I)L)Z ’UL}
+ (= +—=
i 2D 2D
oL
+-==0
Bﬂl COt (BI") 21)
aC 1 Rx — vt vt (Rx — vt)z:'
'8 == (0,8) = 0 = = erf + -
o 0 el ¢ 26”{ 2\/DRt] 7DR eXp[ 4DRt
= l(1 + e + Pi) ex (ﬁ) erfc[Rx ks vt}
P G R 2VDRi
g0 (oo, 1) = =L S fc[Rx - MJ + L ex (E> erfc [Rx i vt}
ax VT T2 2vDre | T 2%\ D 2VDR:

Sources: Data from Brenner (1962); Cleary and Adrian (1973); Lindstrom (1976); and Lapidus and Amundson (1952) for cases 1 through 4, respectively.
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TABLE 10.3  Solutions for C, in Terms of the Peclet Number (%) and Pore Volume, N,,, for the Analytical Solutions in Table 10.2

Case Relative concentration of effluent upon exit from column
PP 2
., asin(p)exp |5 - T Balle)
1 Cx(va) =11 21 3)2
" +—+ P
.Bm 4
p?

P B0t (Bn) = B+ =0

gj 2
. 2Bnsin(B)exp |5 - T Pl

4R PR
2 C(N,,) =1~
(N) > e
R R
4 2

Bncot (B,) + 2 =0
3 C.N,,) = erfc[ %];JB(R = Nl,v)}L @exp [—ZI%—(R va)z} —%(1 +® + @Z””) erfc[ R (R +N, )]
(R )] +=exp (P) erfc [\/_(R + N ]

Source: Data from Van Genuchten and Wierenga (1986).

4 C(N,,) = erfc[

1
0.8 0.8
5 0.6 o 0.6
> =3
=3 (=}
2 g
g E
5 8
o 1=
é 04 3 0.4
D= 5
0.2 02
0 0
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Reduced Distance, Z Reduced Distance, Z

(@ (b)
Figure 10.7 (a) A calculated concentration distribution for R = 1 and P-value (Peclet number) of 5; (b) A calculated concentration dis-
tribution for R = 1 and %-value for 20. N, refers to pore volume. These curves were obtained using the analytical solutions in table 10.3;
C,—C, refer to case 1 through case 4. Notice how solutions for C; and C, (dashed lines) deviate from remaining solutions.
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We can rewrite equation 10.5 to reflect the Peclet number, @, as one of its parameters.
(The Peclet number and its effect on transport is discussed in detail in chapter 13.) The
rewritten equation is expressed as

(29) A9 429
G =€ 1 Gz G Cy= C.
=— = (10.76)
Gl e
L L L
where & = vL/D. Table 10.2 lists analytical expressions for C| @/ny=1 = C, where C, is the
exit concentration. The cases listed in table 10.3 correspond to the same initial and boundary
conditions listed by case in table 10.2; the expressions listed in table 10.3 also involve the
number of pore volumes (N,,) along the column, which are expressed as vz/L.

Differences between the various boundary conditions on the concentration profiles are
illustrated in figure 10.7a, b. Notice that at small ¢, the use of a first-type boundary condition
(relative to other types) results in significant differences. Also, as solute concentration begins
to increase at the column exit, a difference between the solutions for the finite and semi-
infinite cases occurs. This is because the concentration at the inlet and outlet is not continu-
ous nor is it likely to be. Generally, these solutions can predict solute concentration in a
homogeneous media and can also be used to determine transport parameters such as D. As
a general rule, the semi-infinite solution is favored.

10.9 NUMERICAL SOLUTIONS OF EQUILIBRIUM EXCHANGE

In the preceding sections, we discussed some fundamentals of solute transport, both with and
without dispersion. In doing this, we obtained explicit expressions for the position of a solute
front with approximate analytical solutions. This section focuses on numerical techniques
that are normally required to solve the ADE because of the nonlinearity associated with
exchange isotherms. An explicit finite-difference method was used by Lai and Jurinak (1971;
1972) to solve the ADE for nonlinear adsorption. The conditions assume use of a binary-
exchange system for one-dimensional, steady-state flow and monovalent exchange. These au-
thors introduce two dimensionless variables: X, = C,/C; and Y, = S,/S;, which corre-
spond to the solute-concentration in the liquid and adsorbed-phase, respectively. Lai and
Jurinak (1972) obtain the following mathematical expression:

39X, X, 39X,

s R T Ik
ot (X) ax? ax

where D(X,) represents the dispersion coefficient and v(X,) represents the velocity coeffi-
cient; both were adapted according to the following mathematical expressions

L)

— (X)) (10.77)

D(X,) =

- (10.78)

PyST
|t (X
()
where f'(X,) = dY,/dX, and the denominator of equations 10.78 are simply the retardation

factor R (as previously described), which depends on X, because of nonlinearity in the
exchange process.

v(X,) =
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For one-dimensional, steady-state conditions of multi-component equilibrium ex-
change in both homogeneous and layered media, Rubin and James (1973), showed that mul-
tiple fronts and plateau zones occur during multi-species transport problems. They used a
varying total solute concentration in the liquid phase C;. Using chromatography in a similar
approach, Valocchi, Street, and Robert (1981) developed an analytical approach for multi-
species transport of exchanging solutes. By including hydrodynamic dispersion and assuming
electrolyte concentrations are not constant, the governing equation is

aC, A8 oG e

0= Ftp D~ = Tk k=1,2,...,n (10.79)
and 73
G = ;1 Ci
5 (10.80)
Sp= 2 Sk
k=1

where C7 is the total-solute concentration in the liquid phase (variable) and S; is the total-
solute concentration in the adsorbed phase (assumed constant since it usually equals CEC).
The exchange coefficient assumes an associated valence with the adsorbed species v, with a
valence for the exchanging species j,. Thus, the exchange coefficient is expressed as

K, = (%) (%) (10.81)

i}

where X and Y are dimensionless concentrations. The exchange coefficient, K, is important
because it affects the shape of the solute front. Equation 10.81 is a generalized solution; the
use of activity coefficients makes it more accurate. However, in order to obtain a solution to
the ADE, the number of dependent variables must be reduced. This is achieved by express-
ing S, in terms of C,, and by using the n — 1 independent-equilibrium expressions in combi-
nation with the second equation of equation 10.80. This leads to a multi-component
exchange isotherm for a species k such that

S, SO G, O k=12, 00 ,m (10.82)

Substitution of equation 10.82 into equation 10.79 yields a set of n transport equations such
that

aC L aC; 9*C aC
O T2l DO LS
k=1 i (10.83)
Soeie e il
i a9t e

J i)

Equation 10.83 is easily solved by the Galerkin finite-element method. In many transport
problems, the solute front is assumed to travel at a rate proportional to t'/%; however, for a
concave isotherm, K < 1, the profile (front) of X generally travels at a rate proportional to
t, which is similar to dispersion under Fick’s law. In the case of a convex isotherm, K > 1, the
X, front becomes steeper with distance traveled in the medium; both Helfferich (1962) and
Brunauer (1945) discuss many different types of isotherms. Normally, ion exchange is influ-
enced or induced by dispersion because of the mixing across the solute front as it passes
through the medium. Because of nonlinear exchange, the retardation factor R is not con-
stant, however. By assuming an effective, constant value for R, the effective velocity of the
solute front is expressed as

v dx,

=—=-—2 10.84
SR & (10.84)
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where x,, is the equivalent depth of penetration of the solute front. This provides a way to cal-
culate a constant value for R which may be used in cases where small or trace quantities of
species are present in solution, for which linear exchange is almost always assumed. Gener-
ally, a constant R can be used with reasonable predictability if dispersion is negligible.

Various approaches are used for obtaining numerical solutions to the ADE. A popular
approach used by Robbins, Jurinak, and Wagenet (1980a) is to use separate subroutines in the
computer program to calculate cation exchange, complexation, and precipitation/dissolution.
There are numerous computer packages on the market that facilitate the simulation of equi-
librium chemistry, that involve various components and reactions (see chapter 13 for a list of
such models). However, the authors and other researchers (Jennings, Kirkner, and Theis
1982) suggest direct insertion of these parameters (exchange, complexation, etc.) into the
main transport-equation being used, which has been the methodology discussed thus far—
that is, the inclusion of R.This is because convergence problems arise when the ADE and the
model describing exchange, complexation, and so on (equilibrium chemistry), are combined.
Jennings, Kirkner, and Theis (1982) express the dependency of solid-phase concentration to
various quantities such that § = f(C, Sy, t, x, 9C/d1), which can easily be solved by the
Galerkin finite-element method (Pinder and Gray, 1977; Kirkner, Jennings, and Theis 1985).

Abriola (1987) discusses various research which has been performed on contaminant-
transport modeling. Generally, we carefully consider the type of chemical reaction when
choosing the numerical-solution technique to be used for the problem. For example, Rubin
(1983) described six broad classes of chemical reactions that occur during contaminant trans-
port; each has its own mathematical expression unique to the reactions taking place.

10.170 NONEQUILIBRIUM CONDITIONS

In addition to instantaneous equilibrium, which is generally assumed between a solute in the
liquid and adsorbed phase (both of which occur due to the exchange isotherm), two kinds of
nonequilibrium exist in transport studies. These include physical and chemical nonequilib-
rium. As was discussed in chapter 8, liquid flow in the vadose zone is primarily by water films,
which may be periodically discontinuous.

In contrast to physical nonequilibrium, chemical nonequilibrium is caused by kinetic-
adsorption and exchange processes. Often, these processes are not instantaneous and the
typical approach for a solution is to combine the ADE with a rate equation for chemical ad-
sorption within the medium of interest. The physical constituents of a medium (clay, organic
matter, sand, etc.) have a wide variety of exchange sites that are generally classified as type 1
(instantaneous) and type 2 (time-dependent). A rough approximation of first-order kinetics
as applied by Selim, Davidson, and Mansell (1976a) expresses the general sorption rates for
these phenomena as

a8 8

e 5 6 ) O 10.85
o = 5 G kS, (10385)
where S, is the concentration of the sorbed solute (ML™!) and k, and k, are the forward-rate
reaction coefficients. This equation can also be written for backward reactions. For equilib-

rium conditions, the concentration of the sorbed solute can be expressed as

k
Si= Ll K;C (10.86)
Py Ky
and the sorbed concentration for all sites is S = S, + S, = (K; + K,)C = KC. For time-
dependent sites we write

36—5;2 = a(K,C — S,) (10.87)
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where a is the first order rate coefficient (7 ~!). Substitution into equation 10.5 (the normal
ADE) yields

Kfpb> oC  p, 95, pC aC
I e e .
( 6 | ot 6 ot e " ax (1058
where fis S;/S = K,/K, and the equation for the sorbed solute is expressed as
aS
~af = a[(1 - )KC - S,] (10.89)

and for a one-site model, f = 0 and the first term on the left-hand side of equation 10.88
drops out; also, S, is expressed simply as S; this also follows for equation 10.89.

A positive distinction between the physical and chemical nonequilibrium is not usually
possible. As a result, Cameron and Klute (1977) conceived a “black box”-approach for de-
scribing the sorption process. Basically, they described two types of sites that are the same as
those discussed for each of the models presented here; instantaneous and time-dependent, in
which sorption of the time-dependent reaction is described kinetically and takes into ac-
count both the physical and chemical nonequilibrium conditions. Cameron and Klute (1977)
divided their sites into two types expressing equilibrium (S,) and kinetics (S,), where ex-
change between ions in sorbed and liquid phases is via Freundlich (S;) and kinetic (S,)
processes. Their solutions to the ADE involve Laplace transforms, and they were able to
model atrazine, phosphorus, and silver transport successfully.

Nkedi-Kizza et al. (1983) fitted both a first-order reversible kinetic model and a diffu-
sion-controlled model utilizing breakthrough curves. How fast equilibrium is achieved
through the ion-exchange process is determined by two mechanisms: solute supply of the
influent to the liquid-solid interface, and the nature of the exchange reaction. According
to Helfferich (1962), the ion diffusion to the exchange sites is the rate-limiting step, even
in cases of chemical nonequilibrium and when no immobile water is present. The physical
nonequilibrium model is characterized by instantaneous equilibrium at mobile sites and
diffusion-controlled equilibrium at immobile exchange sites, which is described by equation
10.111, later. For time-dependent sites, the kinetic nature of the exchange process is described
by equations 10.88-89. If we express both models in dimensionless terms, they are the same
and have nearly identical breakthrough curves.

Dependent on the physical parameters and phenomena being measured, the ADE can
be generalized to include most equilibrium phenomena of interest in unsaturated zone hy-
drology. This includes: adsorption; precipitation; dissolution; radioactive decay; and addi-
tional chemical reactions. The following expression of the ADE was presented by Parker and
Van Genuchten (1984a)

a8 . ac *C aC
%”§+E=Da—ﬁ—v—z—%c—%s+m+ﬂ (10.90)
where u,, and u, are rate constants based on first-order decay in the liquid and solid phase
(T™Y) and y,, (ML3T 1) and v, (T ') are rate constants for zero-order production in the
liquid and solid phases.

A category of reactions that are classified as chemical nonequilibrium are those of the
radioactive-decay chain. Considering the transport of a single radionuclide species, the gov-
erning equation for two-dimensional transport in a variably saturated media is expressed as

d oC d ] P
ax, (24 a_x,) =35, (0 = 5 [8S,C + p(1 = $)C] = aC* + A[#S,C + p,(1 = H)C]
(10.91)

where D is the apparent hydrodynamic-dispersion tensor, C is solute concentration, v; is the
Darcy velocity, p, is particle density, ¢ is effective porosity, C, is the adsorbed concentration,
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A is the first-order decay coefficient, and C* is the solute concentration in the injected fluid.
By assuming that the relation between adsorbed and solution concentration is described by
a linear-equilibrium isotherm equation 10.91 can be expressed as

d ( aC

d d
—I|D,.— | —— () =— — gC* + :
Mi”&J a%@p) o [8S,RC] — qC* + AS,,RC (10.92)

where S, is the water-phase saturation expressed as a percentage (also referred to as 6 in
some publications) and R, the retardation factor, is expressed as
P~ s _ | poky

e 1 & (10.93)
By expanding the convective and mass-accumulation terms of equation 10.92 and by using
the continuity equation of fluid flow, and assuming that the time derivative of (ppk,) is negli-
gible, equation 10.92 reduces to

Ri=i 4+

ad aC aC aC

e (1O R I e Ril=—=+ + FICE :
ax,-< i axj> Ve ¢S, <at AC) q(C ~ C*) (10.94)
The term g(C — C*) is zero in cases where g corresponds to the specific discharge of a
pumped well because C = C*. The hydrodynamic dispersion tensorial components can be
computed by the method of Scheidegger (1961) such that

12

_ D)’ | Dr(v)’ 0
Dy = B + o] + D (10.95)
_ D ()’  Dr(v)’ 0
D,, = & + o] + D (10.96)
;0
Dyp=Dy =Dy~ DT)T;TZ (10.97)

where the subscripts L and T of D refer to longitudinal and transverse dispersion and D°
(apparent molecular-diffusion coefficient) = ¢7D,,, where D,, is the free-water molecular-
diffusion coefficient and 7 is evaluated using the relation of Millington and Quirk (1961),
such that 7 = ¢ 43§10/,

For the transport of a chain of decaying-solute species, the following equation can be
used

d aC, aC, (aC. >
A bl iy gy SRR —t 4 + RS
e (Dl, ax,) U = BSuR( G+ MG +a(G - Cp)

(10.98)
M
X E d)S’wflmRm)\mCmy = 1, NN (R
m=1

where the subscript / denotes the chemical component, 7, is the number of components in the
chain, ¢,,, is the mass fraction of the parent component m transforming to the daughter com-
ponent /,and M is the number of parents transforming to .. For radioactive decay, A ,is related
to the half-life by A, = In 2/(t,, ;). Initial and boundary conditions associated with equa-
tion 10.98 can be expressed as

Ci(x1,x,0) = Cp (10-99)
Ci(xy, x5,8) = C; on B, (10.100)
aC
iigl n,=q¢ on B, (10.101)
J
aC
D%ﬁm—wmpwgon33 (10.102)
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For a decaying source, the prescribed concentration, C, or prescribed contaminant flux, Ui
is time-dependent and governed by Bateman'’s equation:

de, M e — =0
—d_l'l B _I\ICI iy E g[m)\m Cm where Cl(t = 0) 5 C? (10103)
m=1

For an n_-member chain, the general solution of equation 10.103, subject to the prescribed
concentration at ¢ = 0, is expressed as
i L Can 0 i e
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where [ ranges from 1 to n, and C_(l) (I =1,...,n,) are initial source concentrations of compo-
nents 1 through n., and A, (I =1, ..., n) are source-decay coefficients. Equation 10.104

assumes a step release of dissolved contaminants at the source—that is, all waste material
begins to dissolve at ¢t = 0 and distribution is allowed to proceed continuously at a uniform
rate. If we wish to perform a pulse release of duration 7 of the contaminant, equation 10.104
must be modified by multiplying the right-hand side by f= [U(t) — U(t — T)] where
U(t — T) is the Heaviside unit function, defined by

L= T) (10.105)

U(t—T):(Ot<T

The use of the equations for chained-decay transport in this section makes some major
assumptions on their adequate use. These assumptions presuppose that the air phase is sta-
tic—that is, water is the only flowing fluid phase; flow of the fluid phase is considered isother-
mal and governed by Darcy’s law; the fluid is only slightly compressible and homogeneous;
and the medium is also homogeneous. Also, solute transport is governed by Fick’s law and
adsorption and decay are described by a linear-equilibrium isotherm and a first-order decay
constant. For the case of a straight three-member chain, an analytical solution can be found

1 T T T T T T Figure 10.8 Simulated concentration profiles for the
case of straight chain radionuclide decay, showing
comparison of analytical and finite element solutions
(data from Huyakorn et al. 1992)
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TABLE 10.4 Parameter values for one-dimensional transport of three-member
radioactive-decay chains

Radionuclide properties

Component [ by YIS AyyrsTt R, c
1 433 0.0016 9352 i

15 0.0462 - 9352
3 6540 0.0001 9352 0

in Coats and Smith (1964). Using both analytical and numerical solutions, the transport of a
chain of three radionuclides released from a source located at x = 0 in a confined porous
medium reservoir, is shown in figure 10.8. The properties used for transport calculation for
the three radionuclides are listed in table 10.4.

10.11 COMBINED EFFECTS OF ION EXCHANGE AND DISPERSION

In chapter 7 we discussed how hydraulic conductivity could be calculated through a layered
soil by summing the resistance associated with each layer. Using a similar idea and analytical
techniques, the physical-dispersion effects for an unsaturated soil can be combined into one
dispersion length (L ;). This was done by Bolt (1982), who attempted to include ion exchange
as well. Frissel, Poelstra, and Reiniger (1970) showed that a column-averaged L, value could
be used. Assuming constant L, equation 10.49 can be used, and if one also assumes a linear
exchange (dS/dC) is constant and can be divided through by R, the analytical solution for the
resulting equation can be used, the basic ADE.

For favorable exchange, the solute front in the liquid phase generally lags behind the
solute front in the adsorbed phase. In terms of effective retarded velocity (v,), equal to the
right-hand side of equation 10.57 at steady-state, solutes at low concentration will travel at
velocities less than v,, while those at high concentration will travel at velocities greater than
v,. With time, a steady front will be formed with respect to the moving coordinate, steady-
state. For steady-state, the propagation of the solute front is expressed as

(%)C = (d—S/d%)Té [1 ~Lp ﬂacc/‘@} (10.106)

for which Bolt (1982) determined (analytically) the adsorbed and liquid concentrations.

For unfavorable exchange, the ADE must be solved numerically to describe the solute
front. This is due to the lack of development of a steady front with respect to the moving co-
ordinate, because dispersion, diffusion, and ion exchange cause high concentrations to travel
slower than low concentrations.

10.12 MOBILE AND IMMOBILE REGIONS IN SOILS

Due to the structure of soil, pockets of air are generally present within soil pores regardless
of water content. It is well known, that after purging a medium with carbon dioxide and then
saturating it from bottom to top, there is entrapped air that is virtually impossible to remove.
The description of mobile and immobile regions within a medium has been widely used, in
direct relation to this phenomena. The concept of mobile and stagnant areas of transport was
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first used by Coats and Smith (1964) later expanded on by Van Genuchten and Wierenga
(1976), and has been widely used and explained by numerous other scientists since then. The
concept is simple—wetted-pore space is represented by two different water contents: a
mobile-water content 6, through which water flows; and an immobile water content 6,, =
6, — 6,,,in which water is stagnant and does not flow, but which can be pushed out at various
times due to high-recharge events. The concentration of solute under these conditions is rep-
resented by the same subscripts. As we might suspect, a solute in the mobile phase is trans-
ported via advection and dispersion due to water flow, while the solute in the immobile (stag-
nant) area is transported via diffusion processes that are typically rate-limited.

Normally, as aggregate size increases (as in a well-structured clay) and velocity of flow
decreases, the amount of immobile water will increase. The concept of mobile and immobile
water not only applies to structured soils, but also to other media types according to De
Smedt and Wierenga (1979a, b, 1984), who applied this argument to glass beads (an unstruc-
tured system); it was discovered that concentration of the effluent was accurately predicted
only when accounting for both types of water content. Without use of the immobile phase, a
very high dispersion coefficient is needed in order to fit the experimental data with the ADE.
However, Philip (1968a, b) discovered that only during initial stages of the diffusion process
was transient diffusion different for mobile and immobile regions. Philip (1968) also found
that during initial infiltration, the dimensionless cumulative-diffusive flux obeyed a '/ time
law for the mobile region and the immobile region obeyed a r*/2 time law, but shortly after
the initiation of the diffusive process, the cumulative-diffusive flux of both regions again
obeyed a t'/? time law. Consequently, he argued that dead-end porosity is inconsequential
and that there is an unwarranted distinction between the two regions of flow; other re-
searchers (Smiles et al. 1978b; Warrick, Biggar, and Nielsen 1971; Kirda, Nielsen, and Biggar
1974) agree with Philip, but only for non-aggregated media. This is due primarily to the pres-
ence of macropores and preferential pathways in various soils found to be significant in
transporting herbicides and other chemicals (White 1985; Edwards et al. 1990; Delin and
Landon 1993; Tindall and Vencill 1993, 1995).

Such disagreements are not uncommon due to spatial variability of the medium used
by the researchers, as well as the physical, chemical, and biological characteristics of both the
medium and the chemical being studied. The above argument is similar to the determination
by various researchers, as to whether or not the dispersion coefficient D is either velocity-
dependent or velocity-independent. Smiles and Philip (1978a) found no dependence of D on
v during infiltration of KCl into a mixture of kaolinite and sand. Pfannkuch (1963) reported
that D was independent of v but in order for this to be true, the Peclet number, %, was less
than one (i.e.,? = vd/D,). Watson and Jones (1982) found D to be dependent on v, but they
used high ¥ numbers (P > 35), whereas the previous researchers were using % < 1. This is
plausible since dispersion is the more active process at higher pore-water velocities, and dif-
fusion is more prevalent at low pore-water velocities.

In the earlier section on breakthrough curves we discussed how aggregated media affects the
shifting and shape of a typical breakthrough curve. Water flow through media with large ag-
gregates is complex; it is directly related to both immobile and mobile regions within the
medium, and the amount of preferential flowpaths within the medium (preferential
flowpaths and macropores are discussed in the next section). As a result, there has been con-
siderable recent attention to the transport of industrial and agricultural chemicals through
aggregated media, because chemicals and water applied to them can be lost due to bypass,
preferential flow, or macropore flow. Not only is flow different, but chemical and microbio-
logical effects on the applied (or spilled) chemical to the medium can be quite different than
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in less-structured media; this applies particularly to inter- versus intra-aggregate pore space
within the medium.

Because of these processes, the resulting source/sink terms are more complex, for
which the ADE must be modified significantly to explain and describe exchange inside the
solid (aggregate) particles. Within aggregated media, we normally need to distinguish the dif-
ference between micropores and macropores. Micropores are located inside the aggregates,
through which flow is a diffusive process; macropores are located between the aggregates,
through which flow is advective (sometimes called dispersive, viscous, or convective). When
pore-water volume increases during rainfall or other recharge events, advective flow can
completely dominate the system. It is within such systems that the definition of mobile ver-
sus immobile regions plays a major role in formulation of the ADE and its solution. -

Passioura (1971) and Passioura and Rose (1971) obtained the following simplified form
of the ADE to describe flow and transport in aggregated media

2
9 Cono 9Co, (10.107)
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where the subscripts o and im refer to mobile and immobile phases, respectively. The im-
mobile phase inside the aggregate is treated as a distributed sink and D, is the diffusion co-
efficient of the mobile-liquid phase. The concentration of the chemical in both phases for
equation 10.107 is not usually known, so we have to resort to a simpler form of the ADE
(equation 10.5), that uses an effective dispersion coefficient D. This entails a combination of
advective dispersion in the mobile phase of the aggregated media, and the stagnant phase
within the aggregate. If one assumes steady-state, then the implication is that

8C,, _aC

mo — 1 ‘1
dax dax UL
Following this assumption, Passioura (1971) developed the following expression for the dis-
persion coefficient within an aggregate
85 a'n
D, =-m 10.1

where 67 is the total-volume fraction (air and water) and the subscript e denotes effective-
dispersion coefficient. The diffusion coefficient for intra-aggregate (macropore) flow can be
expressed by

Dmo 5 Demo + vmoa (10'110)

where v is aggregate pore-water velocity and a is aggregate radius. Measurement of a strict 6
in either phase is not easy to obtain; however, 6,, can be considered to be the water content
at matric potentials less than 7-10 kPa (Rose and Passioura 1971a; Tindall and Vencill 1995).
Thus, after obtaining 6, and that for the immobile phase (based on matric potential), the
water content for the mobile phase can be determined by difference.

For aggregated media, flow is also primarily in the void space between aggregates. For
large-aggregate sizes, unsaturated flow is more likely to be discontinuous than for small-
particle sizes. The flow in large aggregates can become discontinuous at higher-water contents
due to entrapped air. Because of aggregate size, the influent solute will not reach all sorption
sites immediately, and instantaneous exchange cannot occur. Mobile and immobile flow re-
gions occur within an aggregated soil, where the immobile region is within the aggregates. This
results in advective flow in the mobile regions (between aggregates) and diffusive flow within
the aggregates, which causes the concentration within the immobile region to lag behind that
in the mobile region,; this is true for both the liquid and adsorbed phase. As one might suspect,
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the greatest number of adsorption sites is within the aggregate, and after an initial-recharge
event, flow through the medium becomes a reversible, diffusion-controlled event between the
mobile and immobile regions. For a mobile-immobile region medium, considering physical
nonequilibrium, Van Genuchten and Wierenga (1976) expressed the ADE as

aC 9*C
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This equation was modified after Coats and Smith (1964), where fis the fraction of sorption

sites in direct contact with the mobile region of the liquid, and m and im subscripts refer to

mobile and immobile regions. Equation 10.111 is exactly the same as equation 10.107, but

with the sorption terms. For transfer in the liquid phase between the two regions we write
aC

im aSim
6, + pp(1 = 1) at —a(C

= = Cp) (10.112)

where a is the mass-transfer coefficient with units 7~*. Other processes within the medium
correspond to these same types of parameters. An excellent example is anion exclusion, in
which the volume of exclusion is basically equivalent to the immobile region expressed above.

The presence of aggregates in soil causes limited accessibility of fluid to adsorption and
exchange sites; this is generally due to physical nonequilibrium, where it is often appropriate
to utilize an effective-dispersion coefficient for aggregates of particular shapes or sizes, since
it allows omission of the source-sink term describing mass transfer in the stagnant-liquid
phase. Adsorption in mobile and immobile regions within the vadose zone have been treated
by Van Genuchten and Wierenga (1976), Selim, Schulin, and Fluhler (1987), Bolt (1982), and
others. Without longitudinal diffusion or dispersion, as in the previous equation, the ADE is
written as

(AS 0 >
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which is easily solved by using a transformation to obtain scaled variables and choosing a
position-dependent time. Van Genuchten (1981) calls this solution a Goldstein J-function.

While the approach above is useful, the stagnant-phase effect can be described after
Crank (1975) by an equivalent length parameter (L,). For spherical aggregates with radius r,
Crank’s expression in the event of ion exchange is

as
() :
e
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where k, is a rate constant (7~") for diffusion inside an aggregate, for which instantaneous
chemical equilibrium is assumed. This allows the expression of L, in terms of k,. The primary
advantage of this method is that all effects are taken into account by one value for a disper-
sion length that allows the ADE to be solved analytically.

Using a nonreactive solute, Scotter (1978) found that theoretical-breakthrough curves,
in the presence of large channels, indicated a considerable amount of solute appeared in the
effluent before one pore volume had leached through. Using Scotter’s (1978) pore-geometry
approach for cylindrical channels, Van Genuchten, Tang, and Guennelon (1984) developed
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an analytical solution for transport through cylindrical macropores. In this instance, the cylin-
drical macropore represents the mobile phase and the surrounding medium represents the
smaller pores or immobile-phase of liquid flow. Van Genuchten, Tang, and Guennelon (1984)
also used fractions to represent adsorption sites in contact with the mobile and immobile
phases, as well as separate retardation factors for each phase. During the initial or early-time,
the medium surrounding a macropore is considered semi-infinite, and dispersion within the
macropore can generally be ignored without loss in predictability. This approach is now
widely accepted when describing solute transport in aggregated soils.

QUESTION 10.9

Assuming linear adsorption for both the mobile and immobile phase, write a general form of the ADE
for reactive-solute transport.

Interest in transport through fractured media has increased in recent years because of the
desire to dispose of hazardous wastes in fractured bedrock. The formulation of the ADE for
transport in fractured media is similar to that in aggregated media. For example, the macro-
pore in aggregated soil becomes the fissure in fractured rock, which accounts for advective
flow. Diffusive flow (or the immobile region) in fractured media is simply diffusion into the
rock matrix rather than the aggregate, as in aggregated soils. Although some analytical solu-
tions are available, most solutions are typically numerical.

The transport parameters and processes that need to be delineated within fractured
media include: (1) advective flow and transport along the fracture length; (2) mechanical dis-
persion longitudinally along the fracture; (3) molecular diffusion from the fracture into the
porous rock matrix; (4) molecular diffusion within the fracture itself (along the fracture axis);
(5) adsorption onto the matrix face along the fracture; (6) adsorption within the porous rock
matrix; and (7) radioactive (first-order) decay. As previously mentioned, diffusion of a chem-
ical into an aggregate or rock matrix greatly reduces the transport time of the chemical, and
allows for microbial decay, half-life degradation, and greater adsorption within the matrix.
Tang, Frind, and Sudicky (1981) used the following equation for solute transport within a
fractured media, using the general principles outlined so that
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where u, is the decay constant (77!), 2b is the mean fracture width (L), R,,=1+
(py/0)(K4,) is the retardation factor, K, is the coefficient of distribution within the
fracture, and 6 is the unsaturated water content. Transport inside the porous rock can be

described by
aC, D
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where D, is the effective-diffusion coefficient within the rock matrix, R, =1+
(ps/0)(K 4i) s the retardation factor, z is the vertical direction on the x, ¥, z plane, x is the
horizontal direction, and K, is the coefficient of distribution within the rock matrix. For
both equations 10.116 and 10.117, linear adsorption is assumed. By using Laplace transforms,
Tang, Frind, and Sudicky (1981) solved these equations analytically for both specific initial
and boundary conditions. Rasmuson and Neretnieks (1981) and others have also investi-
gated the transport of decaying radionuclides through fractured rock. Generally, it has been
discovered that advective dispersion within fractures results in longer travel distances for

B p“bcim (10117)
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radionuclides, which has the effect of decreasing diffusion into the rock matrix; thus, move-
ment is hinderered so that the radionuclide often decays before it reaches ground water.
Consequently, matrix diffusion can prevent or reduce contamination of underlying aquifers
with low-level, decaying radionuclides.

What has been termed a stratified approach was used by Neretnieks (1983) to deter-
mine transport of radionuclides through fractured rock; basically, this assumed flow through
parallel channels of different size. This is analogous to Pouiselle’s law, in which flow is
assumed through a bundle of capillary tubes. For stratified flow, the width of the zone of dis-
persion, o, is proportional to the distance traveled x instead of x2, as in Fick’s law of diffu-
sion. Consequently, any increase in the observation distance yields a larger value for D if the
ADE is used to describe transport in such media. The implication is that using Fick’s law to
extrapolate over large distances and times can have significant consequences, and error in
some applications. Thus, for larger distance and residence times, the effects of stratified flow
and matrix diffusion become major factors in comparison with the effects of hydrodynamic
dispersion.

Transport of solutes through layered soil is a very important aspect of unsaturated zone hy-
drology because most natural systems (soil profiles) have a distinct stratification due to fac-
tors of profile development (see chapter 2). As a result, much research has been conducted
on contaminant transport through layered soils and stratified aquifers. For example, many
laboratory experiments are set up such that a loam-soil layer overlies a sand layer, or a sand
or loam layer might overlay a clay layer so that there is a distinct discontinuity in character-
istics. Typical experiments have investigated wetting fronts, water retention, and solute trans-
port. By adding a short pulse of solute to the inlet end of layer one and measuring the
effluent concentration at z = L, the time of solute travel can be determined for layer one.
However, the travel time for the solute in underlying layer two cannot usually be measured
directly because of the inability to apply a short pulse of solute to the inlet end of layer two.
As a result, the concentration of the effluent is typically measured at z = L, + L, and time,
E—h L

To complicate matters further, each layer generally has different physical, chemical,
and hydraulic properties; all of these affect sorption, microbial degradation, and subsequent
transport of the chemical of interest. Thus, a different behavior in transport of the chemical
should be expected in layered media. In cases where an overlying soil layer has significant ad-
vective transport compared to a minimal advective transport in the underlying layer, signifi-
cant spreading and tailing of the solute front occurs when flow is parallel to stratification. In
such cases, a large D is obtained if we use the generalized form of the ADE. It is naturally
assumed that the media is heterogenous due to layering, and under such conditions Gillham
et al. (1984) indicate that no Fickian dispersion would occur; but in the case of large transport
times and nonuniform velocity fields, Fickian dispersion occurs (Gupta and Bhattacharya
1986). The latter case is generally expected, due to spatial variability of soils.

Sudicky, Gillham, and Frind (1985) investigated the transport of chloride in a thin sand
layer between two silt layers that were water saturated. The solution was injected into the
sand layer to investigate horizontal flow parallel to the silt layers; within the sand layer, ad-
vective flow occurred. From the sand to the silt layers, transverse diffusion occurred, and
molecular diffusion occurred in the silt layers, which was transverse to the direction of flow.
It is likely that complete mixing occurred in the sand, thus the general form of the ADE was

aC B0 ,9€
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In this case, the diffusion from the sand to silt layers is transverse dispersion D, C,. is the
concentration of chloride in the sand layer, and the x direction is parallel to layering. The
movement of the solute in the silt layers, for which there is no advective velocity, is repre-
sented by a diffusive form of the ADE suych that

e

R
where C,, is the concentration of solute in the silt layers and D, is the effective-diffusion
coefficient for the silt. This is a clear case of a nonuniform-velocity field, exhibiting strong
dispersion due to interlayer transport of the chemical.

By assuming a linear-exchange constant K, Starr, Gillham, and Sudicky (1985) used
the same system with a reactive solute, 35Sr. The general form of the ADE could not be used
for the reactive solute due to poor performance at high-flow velocities; thus, neglecting D, ,
transport in the sand layer was described by
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where the width of the sand layer is 2b and other parameters are as previously discussed.

Marle et al. (1967) showed that depth-averaged moments can account for heterogene-
ity due to layering or stratification. Fischer et al. (1979) investigated transport in soil with
depth 4 that was bounded by impermeable layersaty = O and y = h,and for which the mag-
nitude of flow in the x-direction depends on y. For a moving-coordinate system, the transport
equation is

(10.119)
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where ¢ is the cartesian coordinates in a moving-coordinate system, and the overbar notation
indicates a depth-averaged value such that
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The spatial moments can be expressed as

m; = f . §C(& y, 1) d¢ (10.123)
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The operator defined by equation 10.123 is applied to the individual terms of equation 10.34.
If one assumes that C = 0 and 9C/3¢ = 0 for & > *o then

am *m ;
Ttp = D[p(p SN s a—y}] +u'pm, (10.124)
Equation 10.124 is averaged over depth according to equation 10.122, resulting in
om, A S
Tz‘p = Do(p = Unges hpbim, | (10.125)

The depth-averaged moment m » 1S sequentially solved forp = 0,1,2,...,n and using the the-
ory of statistical moments, we can characterize solute concentration and distribution by de-
termination of the variance, skewness, mean, and other parameters. For an example, the
reader can read Marle et al. (1967), which shows how the moment method can be applied to
multi-layered soil. Other researchers (Fried and Combarnous 1971; Guven et al. 1984; Guven
and Molz 1986) have used the moment method with good results.
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Because soils often do not consist of homogeneous layers with distinct physical and
hydraulic characteristics, this strongly influences the parameters within the ADE, leaving a
COmplicated case of solute transport; this is especially true if velocity varies both longitudi-
N38]ly and transversely. As a result, many models use a black-box type approach, where each
layer is assumed to have homogeneous properties. This approach has been used with fair
SUccess with the pesticide root-zone model, PRZM, developed by the U.S. Environmental
Protection Agency (Carsel et al. 1984).

In undisturbed, naturally structured, and layered media with existing macropores and
ﬂf»w channels, only partial displacement of resident soil-water and solutes by incoming solu-
ti6ns occurs. Intact cores in the laboratory are a common tool to address questions involving
the characterization and predictability of solute transport in such media. Also, core size has
2 Significant effect on results; generally, the larger the core, the more comparable the results
are to collected field data. Since heterogeneity of field soils normally is large, the use of
Ia.l)oratory-measured hydrodynamic-dispersion coefficients is sometimes not appropriate
With the typical core sizes used. Bouma (1979) and Bouma et al. (1979) indicate that field
Variability is strongly reduced by using cores with a volume of 10 L or larger. Tindall, Hemmen,
and Dowd (1992) and Tindall and Vencill (1995) have obtained good agreement between
!al)oratory— and field-transport parameters for herbicides using intact cores 28 L in size—that
18, 15 cm diameter by 40 cm height.

10.13 PREFERENTIA| FLOW PATHS, MACROPORES, AND FINGERING

In 1980, it was discovered that more than 1,000 wells on eastern Long Island, New York, had
been contaminated by the herbicide aldicarb (Baier and Moran 1981). It has been generally
P€rceived that herbicides and many other chemicals have a long residence time within soils,
ang are strongly adsorbed. Due to adsorption as well as biological and chemical processes, it
Was commonly assumed that most chemicals would be permanently degraded or “bound”
Within the soil profile, thereby preventing ground water contamination. Since the early
1980s, researchers have increasingly reported the unexpected rapid movement of chemicals
th1rough the vadose zone to ground water. This can be due in part to the greater technological
adyances in measurement techniques of various chemicals; however, the governing processes
through which contamination has occurred have not changed.

Field and laboratory experiments on adsorption and leaching suggest that agricultural
ang jndustrial chemicals have relatively limited mobility, and most chemical residues are
COhfined to the surface horizon of soils. However, when scientists observed chemical residues
that were at greater depths in the profile than expected (based on classical assumptions of
solyte transport), doubts arose about sampling and analysis techniques, and unexplained
goinbsource contamination. Eventually, scientists rediscovered the principle of preferential

Ow.

Lawes, Gilbert, and Warington (1882) described preferential flow over 100 years ago.
These scientists described the basic difference between matrix flow and preferential flow, and
illystrated that matrix flow will predominate in less-structured media, while in structured
Media such as clays, preferential flow will dominate; the preponderance of one type of flow
COlmpared to the other will have significant impacts on solute transport. Despite the fact that
large pores were recognized as conduits for rapid flow, it was not until the 1970s that soil
Physicists started to quantify the impact of preferential flow on solute transport and related
I€Charge of ground water. Also, the fact that preferential flow can occur does not mean that
PT&ferential transport of the chemical will also occur.

Preferential flow is simply the nonideal behavior of water flow in soil. To inform the
stufent, nonideal behavior has a wide variety of terms associated with it: preferential flow;
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macropore flow; fingering; wetting-front instability; bypass flow; channeling; short-circuiting;
partial displacement; subsurface storm flow; and others. All of these depict essentially the
same phenomena. This section attempts to describe nonideal flow by three commonly used
terms. Preferential flow is the general term used to describe the movement of water and re-
lated solutes through preferred flow paths in soils.

We describe a preferential flow path as a pathway of preferred flow that has a lower
bulk density than the surrounding soil matrix rather than a crack or fauna tunnel; thus, it
offers the least resistance to flow under specific field conditions. This implies that part of
the soil matrix is “bypassed” when flow occurs, especially during significant recharge events
(Tindall and Vencill 1995). The preferential flow path is considered a mesopore by some,
ranging in size from 10-1,000 wm (Luxmoore 1981). Macropores are defined as large cracks,
worm holes, fauna tunnels, and channels created from decayed roots, with a size range of >
1,000 pm. However, for such large cracks to transport much fluid, the head (or pressure po-
tential) within the medium has to exceed atmospheric potential. For example, when a large
crack (larger than a micropore of 0-10 um) within the profile is filled with air, water can
enter the crack only if the potential within the matrix exceeds atmospheric potential. This is
likely to happer only during significant runoff or recharge events, or in cases where a capil-
lary fringe occurs directly above the crack. In this case, ponded water overcomes atmos-
pheric potential, thereby forcing fluid into the crack where it can rapidly flow to deeper
depths.

The pore sizes mentioned above for micro-, meso-, and macropores are based on the
senior author’s research, but are comparable to those of Luxmoore (1981). Various re-
searchers have pore-classification scales describing these pore sizes (Luxmoore 1981,
Jongerius 1957; Johnson and McClelland 1960; Everett 1972; Greenland 1977; Landon 1984);
thus, it is no surprise that the need for standard pore-size classification was raised by Lux-
moore (1981), who suggested the sizes listed above. While strict agreement on the pore sizes
representing the various pathways of preferential flow has yet to occur, the effects of these
pathways on ground water contamination are in mutual agreement.

The terms fingering, wetting-front instability, and partial-volume flow are applied dif-
ferently than macropore flow; they are associated with layered soils, air compression, hy-
drophobic soils, and water redistribution following ponding. Fingering is not usually visible
in the field (as is the case with macropores) but has become visible when using dyes to stain
such areas and then excavating these areas (Starr, Gillham, and Sudicky 1986). Numerous
laboratory and field studies have been conducted investigating fingering, using applied and
theoretical approaches and involving both analytical- and numerical-modeling procedures
(Miller and Gardner 1962; Hill and Parlange 1972; Baker and Hillel 1990).

Many of these experiments have been performed using a layer of fine-textured soil
over a layer that is much coarser. Raats (1973) and Philip (1975a, b) used the Green and
Ampt (1911) infiltration model to approximate fingering, a reasonable approach when using
a uniform, coarse-textured initially dry soil. However, the underlying assumptions are that
the soil is subject to one-dimensional absorption and the lack of entrapped air; in this in-
stance, an initially dry soil will exhibit a sharp wetting-front rather than a diffuse front. Also
assumed is that the soil is initially dry, so this approach is limited. Small amounts of initial
wetness are sufficient to reduce instabilities that occur if the media is at an initially dry state
(Diment and Watson 1983, 1985; Philip 1975a, b). This is because the distribution of initial
wetness affects the pathways that the fingers would take; also, Glass et al. (1989) showed that
fingers can repeatedly form in the same location during successive infiltration cycles in ini-
tially wet sands.

Hillel and Baker (1988) suggested that when a wetting front is characterized by a high
value of suction, the front will not penetrate into a coarse-textured layer from a fine-textured
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layer until the suction at the interlayer boundary falls to an effective water-entry suction i,,
which is characteristic of the sublayer. They concluded that if the sublayer conductivity, K,
at its water-entry suction (expressed as K, (i,)), exceeds the flux through the top layer, Q,,
the pore-water velocity increases across the interlayer and only a small portion of the un-
derlying layer conducts any water delivered to it, which results in fingering. Baker and Hillel
(1990) proposed that fingering would not be initiated unless K,(i,) > Q,, assuming steady-
state flow, and that by using the quotient of these terms the wetted fraction, F, of the under-
lying layer could be predicted such that

o,
iR S
K, (i)

Using a top layer of very fine sand overlying a layer of coarser texture, Baker and Hillel
(1990) obtained good results with this model. Also, utilizing a linear regression of the relation
between particle size and the effective suction of water entry s, then
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where d, is the median particle diameter (um) of the underlying layer, and i, is in cm. The
conductivity (cm/s) is determined from the expression

K)o = i el (10.128)
By utilizing Darcy’s law (see chapter 7) for the top-layer flux (Hillel and Baker 1988),
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If one assumes K, =~ K, (the saturated hydraulic conductivity of the top layer), then by sub-

stitution
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Generally, fingering is a nondeterministic process, unlike macropore flow. Upon wetting, the
water or solute is (or is not) transported down the same finger as before, during subsequent
recharge events. Hillel and Baker (1988) and Baker and Hillel (1990) suggest that particle
size and 6 are the common properties underlying the promotion and suppression of finger-
ing. Despite this evidence, other properties such as particle-size distribution, initial-water
content, hysteresis, and so on, need to be investigated since these parameters also appear to
affect fingering.

The primary factors that cause nonideal transport of soliites are nonhomogenous phys-
ical and chemical media properties, and transport and sorption nonequilibrium. Preferential
flow is usually a function of soil porosity that is separated into the portion of media occupied
by gases and fluid, and more specifically, to the medium’s ability to retain water at various
matrix potentials (pressure or suction gradients). Pores can form naturally, especially in the
upper profile, where microbiological processes are greatest. Other voids (such as cracks) can
form during wetting and drying events and can further bifurcate, allowing possible connec-
tion with other cracks to form continuous channels and even peds. In agricultural and indus-
trial settings in which no tillage or other type of surface-sealing activities take place, soil can
have a high density of continuous macropores (Dick, Edwards, and Haghiri 1986). The mode
of fluid flow is also dependent on initial water content of the media. Thus, edaphic, manage-
ment, and meteorological factors ensure that both porosity and the potential for preferential
flow are dynamic variables, both temporally and spatially.

(10.130)
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QUESTION 10.10

Using a sublayer particle size, d,,, of 1000-2000 um, determine the wetted fraction for this media. As-
sume the ponding depth H,, is 1.0 cm, the layer thickness z, is 5.8 cm, and the saturated conductivity K,
is 2.0 X 107> cm/s. Also, ¢, is 3.0 cm, K,, (¢, ) is 7.7 X 1072 cm/s, and Q, is 3.4 X 1073,

QUESTION 10.11

If the particle size d, decreases, will the wetted fraction F increase or decrease?

Modeling Chemical Transport under Conditions of Preferential Flow

Chemical transport under nonideal conditions is dependent on pore-size distribution for
which there are two general cases: (1) Uniform distribution—in the presence of a relatively
narrow, uniform pore-size distribution (i.e., there is little variability); nonideality usually in-
creases with a reduction in water content from saturation. With uniform saturated pores,
dispersion is minimal. When such a medium desaturates, the pores empty slowly and fluid
flow occurs mostly by thin water films attached to each particle. Thus, the pores become not
only relatively “empty,” but also the immobile domain. At a low-water content, much disper-
sion (diffusion in this case) is exhibited and the resulting breakthrough-curve shifts left. If
the medium continues to desaturate, the emptiness of the pores results in a narrowly wetted
pore-size distribution, and chemical transport becomes more ideal once again. As a result,
nonideality might be compared to a bell-shaped curve: it increases as 6 decreases from satu-
ration, reaching a maximum value at some critical 6, then decreases as 6 is further reduced.
(2) Nonuniform distribution—generally, structured media have a wide range of pore sizes,
many of which can be macropores. During saturated transport, nonideality is high because of
pore-size distribution; however, as the macropores empty during desaturation, a narrowing
of the effective porosity or pore-size distribution results. This reduces nonideality because
the pores now conducting fluid are more uniform in size. It has been suggested that 0,, can
be considered to be the water content at matric potentials less than about —7 to —10 kPa
(Rose and Passioura 1971a, b; Tindall and Vencill 1995). Thus, the macropores transporting
water empty at very low matric potentials near saturation; below this threshold, transport is
via matrix flow and nonideality decreases as the soil desaturates. Despite this, there is a crit-
ical point at which further reduction in water content can create immobile regions and in-
creased nonideality results, as in case 1.

In structured soils, chemical transport and fluid flow between the mobile and immobile
regions are commonly determined by the use of Fick’s law to describe physical, diffusive
transfer (explicitly), by using empirical first-order mass-transfer expressions to obtain an av-
erage transfer; and implicitly, by using an effective-dispersion coefficient that includes a
source/sink diffusion term, hydrodynamic dispersion, and axial diffusion. In this case, the
lumped D replaces the usual hydrodynamic-dispersion coefficient.

Diffusion-based models that use Fick’s law normally assume that aggregates have a
spherical geometry. A similar type of model that utilizes a cylindrical geometry was devel-
oped by Van Genuchten, Tang, and Guennelon (1984) for predicting solute transport in media
with macropores. A geometric description of the medium is required to develop the ADE for
these model types. For mathematical simplicity, most of these models assume uniform-size
aggregate structure, but for natural media these conditions do not usually exist. As a result,
aggregate-size distribution and aggregate-shape variations have to be taken into account
for these models to apply to a range and variety of cases. Rao, Jessup, and Addiscott (1981)
showed that nonspherical aggregates can be represented by the use of equivalent-spherical
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aggregates whose radii are such that the volume of the sphere is equal to the volume of the
nonspherical aggregate. Rasmuson (1982) showed that one aggregate shape could be ap-
proximated with another by employing the same ratio of external-aggregate surface area to
total porosity. Van Genuchten (1985) developed a geometry-dependent shape factor (f) that
can be used to transform an aggregate of specific shape and size into an equivalent sphere
that has similar diffusion characteristics to the original aggregate.

Both distribution and shape variations of aggregates must be described to extend
diffusion-based models to field situations. Rao et al. (1980a, b) developed a method that
works well, utilizing a range of aggregate sizes to compute an equivalent radius from the vol-
ume-weighted radii of each size-class; this was further validated by Nkedi-Kizza et al. (1982).
A combination of the shape transformations used by Van Genuchten (1985) with the aggre-
gate-size distribution of Rao, Jessup, and Addiscott (1981), for a soil that contains varying
sizes of nonspherical aggregate, allows the transformation of the medium to one of equiva-
lent, spherical aggregates of uniform size. With such an approach, the diffusion model can be
extended to a variety of field situations. Many models are currently available that attempt to
predict preferential transport of chemicals in the vadose zone. Cooney, Adesanya, and Hines
(1983) found that aggregate-size distribution ranges of less than =0.15 mm are narrow
enough that the effects of nonuniform distribution can be ignored. Thus, the diffusion model
used for predicting transport should be chosen carefully.

The physical mass-transfer model replaces the mechanistic description of diffusive
transfer in the diffusion model, with a kinetic first-order mass-transfer expression. This no
longer requires a description of the medium’s structure because chemical transfer is now de-
scribed by a mass-transfer coefficient, and is assumed to be a function of the difference in
chemical concentration between the mobile and immobile regions. Coats and Smith (1964)
performed early work on mass transfer in two-region flow, and subsequent expressions for
the mass-transfer coefficient have been presented by Rao et al. (1980a, b), Raats (1984), and
Park, Parker, and Valocchi (1986). Using these allows an independent determination of the
mass-transfer coefficient and reduces its limitation on various soils.

The lumped (or effective-dispersion) model accounts for diffusive transfer between the
mobile and immobile regions, implicitly. As the medium approaches equilibrium, the sym-
metry of the experimental breakthrough curve increases to a point at which asymmetry is
very difficult to ascertain. At this point, nonequilibrium is evidenced by the increased disper-
sion. This model fits experimental data very well in such cases (Nkedi-Kizza et al. 1982; Lee
et al. 1988). The diffusion and mass-transfer models have been compared by Rao et al.
(1980b), Goltz (1986), and Miller and Weber (1986) and in all cases, the diffusion model gave
similar results to the mass-transfer model. However, the increase in accuracy gained with the
diffusion model does not justify the additional mathematical complexity or the larger num-
ber of parameters associated with it. As a result, the mass-transfer model is preferred by
some researchers because of the major advantage it has in not requiring a description of soil
structure.

Problems Encountered in Modeling Preferential Flow

The complex nature of soils and the formation of structured media—which can have large
voids that may or may not be continuous—creates a lack of continuity. This lack of continu-
ity causes problems in estimating chemical fluxes under preferential-flow conditions. At
present, scientists have no way to describe the continuity of macropores or preferential flow-
paths and thus, modeling is difficult. Generally, soil is treated with traditional physical con-
cepts, including local equilibration of potentials and fluid flux that is proportional to the
hydraulic gradient. In preferential flow, this is extremely important because, during wetting
of soil that exhibits preferential flow characteristics, the wetting front penetrates the profile
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to significant depths, thus bypassing the intervening pore-space in the general matrix. This
decreases the residence time and solid-phase interaction of solutes and also reduces the ef-
fects of retardation, adsorption, and degradation, thereby increasing the potential of ground
water contamination.

The use of drainage rates and tracers indicates preferential-flow behavior and some-
times supports the validity of a given model under certain conditions, but it is often difficult
to extrapolate information gained in one experiment, to other initial and boundary condi-
tions for different sites and experiments. Much of our knowledge is based upon parameters
obtained from destructive sampling, which have been limited to small samples or small col-
umn studies. A “representative elementary volume” (REV) is used to describe a volume of
medium over which water content and potential are usefully defined. Bouma (1979) and
Bouma, Dekker, and Haans (1979) recommended an REV of 10 L to escape the effects of
spatial variability.

Analysis of the problems of previous research in modeling flow through structured
media suggests that new models will have to consider (1) the variety of pore sizes in which
preferential flow takes place, since it takes place not only in non-capillary-sized pores; (2) the
continuity of preferential-flow paths except under saturated conditions; (3) since not all large
pores are effective in conducting fluid, what part of the pore is interacting with the adjacent
matrix; (4) investigation of laminar-film flow and its effectiveness in flow in large pores; (5)
the climatological and other local conditions that are important in preferential flow; (6) col-
loidal facilitated transport through larger pores and the local geochemical reactions that may
result in improved structure within large pore walls (i.e., cutans); (7) the effects of hysteresis
in preferential flow; (8) the influence of bounding macropores on matrix flux in desaturated
conditions; (9) the change, with time, of the structure of preferential-flow paths and macrop-
ores, that continually develop in undisturbed media and in soils that support agricultural
crops, and trees, and others.

Various models have been developed in an attempt to deal with the predictability of
transport under preferential-flow conditions. To summarize, these include: diffusion models;
mass-transfer models; effective-dispersion models; multi-region flow models; mechanistic;
statistical; statistical-mechanistic models; transfer-function models (described in chapter
13); and numerical models (Steenhuis, Parlange, and Andreini 1990). However, all of these
are based on physical parameters that can be measured in the laboratory or the field, to
characterize medium behavior. Theoretically, these parameters should be characteristic of a
given medium at the scale of the measured REV but only for a profile that is homogeneous
and unstructured. As a result, the values obtained for the measured parameters are not ap-
plicable in structured soils because such media are both heterogeneous and layered/struc-
tured, which requires a very large number of parameter values. These are nearly impossible
to obtain without altering the nature of the system, so we generally ignore the problem and
make an “assumption” (all encompassing) that the parameter of interest can be used at a
profile or hill-slope scale. Interestingly enough, there is little guidance in estimating the
“real” parameters, or on how to obtain effective values for them. At present, the best we can
do is to use conservative tracers and various isotopes (see chapter 13) as well as intact cores
of representative size.

Currently, both uncertainty and risk are associated with the predictions of various mod-
els; these need to be further evaluated in experimental studies. Models should be developed
at the scale of interest for which they are intended to be used, or developed at a smaller scale
and modified for use at larger scales, using accurately collected data. The current trend ap-
pears to be to develop more complex models because of the computational ability of ad-
vanced computer systems (Jarvis 1994). However, simply increasing the complexity of model
structure at the expense of adding more parameters (extremely difficult to measure and
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identify), is not the best approach. For practical field- and regional-scale applications, models
need to be developed for specific scales, and nondestructive measurement techniques must
be developed that yield the necessary experimental information.

10.14 COLLOIDAL-FACILITATED TRANSPORT

The transport of contaminants to ground water via preferential pathways is of increasing
concern as a major environmental problem in the U.S. Agricultural, industrial, and petro-
leum-derived chemicals may move to ground water as soluble constituents in soil water, or
may be associated with soil-derived colloids that are capable of transporting such pollutants
to the ground water. Pesticides, trace metals, and contaminant organics, that exhibit high ad-
sorption and/or low water solubility, can move to ground water by this mechanism. The
process is greatly exacerbated by the presence of preferential pathways.

Gaps exist in our current understanding of colloidal transport in soils and underlying
geologic materials, a process likely ongoing for many years, that may explain the higher-than-
expected concentrations of contaminants in ground water. Previous investigations have
focused on homogeneous soil materials but have not fully accounted for the influence of
aqueous and surface chemistry on colloid stability.

Previous investigations dealing with contaminant migration to subsurface environ-
ments have considered soil or ground water as a two-phase system, where contaminants
could partition between the mobile-liquid phase and immobile-solid phase. Based on this ap-
proach, it was predicted that many contaminants would be relatively immobile because of
low solubility or high-adsorption affinity for the solid phase. However, recent research sug-
gests the existence of mobile-immobile conditions of the aqueous phase within soils, espe-
cially those containing large interconnecting systems of macropores. Thus, it is becoming
increasingly evident that under certain (yet poorly defined) conditions, contaminant migra-
tion to and/or within ground water can be significantly enhanced by colloidal migration,
where the colloidal phase itself is undergoing transport via preferential pathways (Rees
1987; Buddemeier and Hunt 1988; McCarthy and Zachara 1989). It has been suggested that
radionuclides, organics (including PCBs, PAHs, and pesticides), and nonradioactive inor-
ganic contaminants found in ground water may have migrated via colloidal-transport mech-
anisms, and currently, significant research efforts are focusing on this mechanism (Champ
1990; Nelson et al. 1985; Gschwend and Wu 1985; Jury, Elaboi, and Resketo 1986; Rees 1987;
McDowell-Boyer, Hunt, and Sitar 1986; Buddemeier and Hunt 1988; Enfield, Bengtsson, and
Lindquist 1989; Harvey et al. 1989; McCarthy and Zachara 1989; Ryan and Gschwend 1990;
Penrose et al. 1990).

Colloidal-transport mechanisms have recently received considerable attention in pop-
ular scientific publications (Raloff 1990; McCarthy 1990; Jardine, Weber, and McCarthy 1990;
Champ 1990; Looney, Newman, and Elzerman 1990; Gschwend 1990; Enfield and Kerr 1990).
Fewer investigations have specifically addressed hydro-geochemical processes regulating the
generation of stable colloidal suspensions (SCS) within soil, or the mechanisms operative in
colloidal migration through the unsaturated zone. While a significant body of literature has
addressed the theory and application of colloid stability and transport through well-defined,
homogeneous media (Yao, Habibian, and O’Melia 1971; O’Melia 1980), the process govern-
ing the generation of SCS in intact soil and unconsolidated geologic materials has received
less attention (McCarthy and Zachara 1989).

Colloid Migration

Qualitatively, the transport of colloids within soil is dependent on three fundamental
processes: (1) generation of colloids; (2) stabilization of colloidal suspensions; and (3) unat-
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tenuated transport—that is, the transport without aggregation, sorption, or filtration within
the soil as in preferential pathways (McCarthy and Zachara 1989). The generation and trans-
port of three general classes of colloidal material in soils has been identified: inorganic col-
loids, microorganisms, and organic molecules. These materials can be important in contami-
nant mobility, both as facilitator of transport to ground water, and as a source of ground water
colloids capable of remobilizing contaminants within the subsurface.

Eluvial and iiluvial processes—whereby clay and other inorganic colloids are trans-
ported vertically from surface soils and redeposited in lower strata—have long been recog-
nized as important pedogenic processes (Jenny and Smith 1935). Clay migration within soil
profiles previously has been evaluated using a number of radio-labeled clay suspensions.
Bertrand and Sor (1962) examined the influence of rainfall intensity on soil structure, and
migration of colloidal materials via application of %Rb labeled clays. **P (Kazo and Gruber
1962), *Sr (Von Reichenbach and Von der Bussche 1963), ®CO (Toth and Alderfer 1960),
and *Fe (Woolridge 1965; Coutts et al. 1968a, b) have also been utilized to examine lateral
and vertical transport of soil particles.

Generation of colloidal clay and iron, aluminum, or mixed iron-aluminum colloidal
soils is achieved through dispersion of the particles or dissolution of cementing agents. These
particles are also formed by dissolution and transport of dissolved constituents, with subse-
quent reprecipitation of clays or soils. The stabilization of the colloidal suspensions is highly
dependent on soil-solution chemistry, with counterion type and concentration as two of the
most important variables. Traditionally, colloidal-suspension stability has been explained
using DLVO theory (Sposito 1984; see chapter 3). Whether colloids are transported through
the soil matrix or deposited within that matrix is usually related to molecular sieving, with
the intent of colloidal aggregation related to sieving efficiencies. Similar discussions of coag-
ulation and filtration theory with regard to water and waste-water treatment (Yao, Habibian,
and O’Melia 1971; O’Melia 1980) emphasize the importance of chemical factors in particle-
removal efficiency.

Clay illuviation and all colloidal transport through soils implicate the role of preferen-
tial flow through macropores and other soil discontinuities. Akamigbo and Dalrymple (1985)
generated illuvial-intrapedal cutans (e.g., clay coatings on soil peds) by applying dilute clay
suspensions to undisturbed blocks of soil. That clay could be transported through intact B
horizon material via natural channels (macropores) associated with ped faces was also
demonstrated in this investigation, and was observed by Anderson and Bouma (1977a, b).
Such preferential flow can occur within earthworm channels (Ehlers 1975), along ped faces
(Anderson dnd Bouma 1977a, b); and other discontinuities within the unsaturated zone, in-
cluding particle-size changes in unsiructured material (Glass, Steenhusin and Pavlange
1988). The ability of soil macropores and other preferential pathways to conduct significant
volumes of water, and the implications of this flow in terms of minimal interaction (e.g., siev-
ing) of dissolved and suspended components by the bulk-soil matrix, has been discussed in
detail by Thomas and Phillips (1979) and Beven and Germann (1982).

The transport of colloidal-sized macroorganisms in soils has also been observed.
Wollum and Cassel (1978) note that Streptomycete conidia were easily transported through
sand columns under saturated conditions. Transport of Escherichia coli through intact and
disturbed soil cores (Smith et al. 1985) and in the field (Rahe et al. 1978), has also been
observed. Indications are that soil structure (e.g., macropores) influences the extent of trans-
port, with movement of coliform up to 830 m reported by Hagedorn et al. (1981). Addition-
ally, recent studies have provided evidence of in situ transport of bacteria and microspheres
through an aquifer, although the processes regulating transport could not be delineated
(Harvey et al. 1989).

Soil-humic materials can also facilitate transport of contaminants via a number of
mechanisms. Humic materials have been noted to stabilize clay-colloidal suspensions (Jenny
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and Smith 1935; Gibbs 1983). Natural organic matter is readily adsorbed by oxide and min-
eral surfaces, with nearly complete surface-coverage likely for hydrous iron oxides, alumina,
and edge sites (faces) of aluminosilicates under typical conditions found in natural waters
(Davis 1982). Tessens (1984) found that essentially all topsoil samples from the upland soils
of Malaysia had significant amounts of water-dispersible clay, as did a set of Brazilian soils
(Camargo and Beinroth 1978), with organic coatings being implicated as the primary con-
trolling factor. Jekel (1986) found that soluble humic materials extracted from surface and
ground water stabilized colloidal suspensions of kaolinite and silica, with the degree of sta-
bilization dependent on pH and ionic strength. Based on electrophoretic mobility measure-
ments and the observed high-adsorption affinity at low pH, it was concluded that stabiliza-
tion was primarily caused by the sorption of higher molecular-weight neutral molecules
(Jekel 1986). Additionally, Tipping and Higgins (1982) found adsorbed humic substances sta-
bilized colloidal dispersions of hematite, and that dissolved humics were responsible for sta-
bilizing aluminum-oxide colloidal suspensions, although in contrast to Jekel (1986), their
electrophoretic-mobility measurements indicated that the suspended alumina particles were
highly charged negatively, as a result of adsorbed organic matter. Beckett and Le (1990)
stated that organic coatings were the controlling factors determining the surface-charge be-
havior of suspended inorganic particles in riverine and estuarine waters from the Tara River
system in Australia. ‘

In addition to enhancing the stability and mobility of inorganic colloids, organic coat-
ings greatly facilitate the partitioning of nonionic contaminant organics to their surfaces,
since the relative amount of organic matter has been shown to be the most important factor
for predicting nonionic organic partitioning to soils and sediments (Chiou 1989).

It has been demonstrated recently that laboratory-modified inorgano—organo clays are
efficient sorbents, in many instances as efficient as granulated-activated carbon, for removing
a number of organic contaminants, including polychlorinated dibenzo dioxins (PCDDs),
polychlorinated biphenyls (PCBs), tetrachloromethane, and polycyclic aromatic hydrocar-
bons (PAHs) from aqueous solutions and industrial wastewaters (Srinivasan et al. 1989; Lee
et al. 1989; Nolan, Srinivasan, and Fogler 1989; Srinivasan and Fogler, 1989, 1990a, b; Smith,
Jaff, and Chiou 1990). Many of the modified clays used in these studies are the laboratory
cogeners of the hydroxy-interlayered 2:1 clay minerals (HIM), which are important compo-
nents of the clay and mineral fraction in soils throughout the southeastern and midwest
United States. HIM can be an important sink for contaminant organics in organic-poor soils,
as well as a potentially mobile phase capable of facilitating colloidal transport.

Colloidal particles are also potentially transported through the solum to underlying
strata. Enfield and Bengtsson (1988) found that blue dextran, a model macromolecule, was
subject to size-exclusion as it percolated through soil columns, thus flowing through the
larger pores and eluting prior to tritiated water. Similarly, the transport of water-soluble or-
ganic carbon (WSOC) through soil columns was found to be more rapid than tritiated water;
this was also attributed to a size-exclusion mechanism (Bengtsson, Enfield, and Linduvist
1987; Enfield et al. 1989). Such observations have suggested that this mechanism could
significantly enhance the transport of contaminant organics to subsequent environments
(Enfield and Bengtsson 1988).

An earlier study on facilitated-DDT transport by humic substances (Ballard 1971)
and corroborated by recent investigations, has provided evidence that dissolved organic
macromolecules enhance the mobility of contaminant organics, that is, naphthalene, phen-
athrene, and DDT (Kan and Tomason 1990). Few investigations have studied the sorption
and transport of actual WSOC through the soil (Jardine, Weber, and McCarthy 1989). The
vast majority of investigations in this area have employed either “model” organic macro-
molecules, or humic materials derived from base-extraction of solid-phase organic matter—
both of which can be poor models for naturally-occurring soluble-humic substances. In this
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regard, Leenheer and Stuber (1981) found that the hydrophobic neutral-fraction of dissolved
organic carbon (OC) from oil-shale process-water was preferentially adsorbed, compared to
the more hydroplhilic fraction. Transport of the various dissolved organic fractions through
soil columns was found to parallel their sorption behavior in batch experiments of the same
soil material (Leenheer and Stuber 1981). Likewise, Jardine, Weber, and McCarthy (1989)
observed preferential sorption of the hydrophobic, relative to the hydrophillic fractions of
WSOC in a number of soils, with the total sorption increasing with increased soil-profile
depth.

The preceding discussion illustrates the general concerns regarding colloidal-transport
processes in soil, and the potential for colloid-assisted transport of both inorganic and or-
ganic contaminants. Contaminants are viewed as being associated with two phases: either
dissolved and hence mobile, or matrix-adsorbed and retained. Partition coefficients are often
useful for predicting relative mobility of contaminants. Used in conjunction with advec-
tion—dispersion models (ADESs), contaminant transport can be simulated and the extent of
migration with time estimated. Deviations from model predictions are frequently attributed
to preferential pathways. However, such deviations can be partially explained by colloidal
transport processes (Jury, Elaboi, and Resketo 1986).

Gschwend and Wu (1985) identified colloidal materials as important components in
PCB-adsorption experiments that confounded the determination of partition coefficients.
DDT was found to adsorb and concentrate up to 15,800 times its water solubility on colloidal
materials, within the highly colored southeastern U.S. streams (Poirria, Bordelon, and Laseter
1972). Enhanced apparent solubility of hydrophobic compounds by humics was also noted
by Chiou et al. (1986). Ninety-one percent of the DDT applied to a forested soil was associ-
ated with humic acids, while the remaining nine percent was contained within fulvic acid and
dissolved fractions (Ballard 1971). Additionally, it was demonstrated that soil-humic material
was readily dispersed by urea additions, with a 30-fold increase in DDT mobility noted.
Similarly, polycyclic aromatic hydrocarbons also exhibited high affinity for dissolved-humic
substances (McCarthy and Jimenez 1985) as did trace metals (Hoffman et al. 1981), and
natural estuarine colloids exhibited high affinities for atrazine and linuron (Means and
Wijayaratrne 1982). Mineral surfaces can also sorb large amounts of contaminants (e.g.,
Jenne 1968; Vinten and Nye 1985). Radionuclides were found to be associated principally
with 2-3-nm-tadius size-class (taken to be humic acids), when equilibrated with soils
(Sheppard et al. 1980), while *****Pu partitioning was dependent on a number of parameters
and not clearly understood (Alberts et al. 1977). The deep (30 m) transport of plutonium and
americium at a defense-program site at Los Alamos was also found to be colloid-facilitated,
as the transported radiounuclides were shown by ultrafiltration to be present as colloids in
the 0.025 to 0.45 m size range (Nylan et al. 1985; Nelson and Orlandini 1986). Similar results
have recently been reported for radionuclide transport at the Nevada test site and at Los
Alamos National Laboratory (Buddemeir and Hunt 1988; Penrose et al. 1990).

Despite the demonstrated potential for colloidal transport through soils and the viabil-
ity of contaminant-colloid associations, the role of colloid-assisted, contaminant transport to
ground water remains largely conjecture, although a limited number of systems studied pro-
vide indication of the significance of the process. Perhaps most notable is the observation of
ground water turbidity resulting from application of low-salinity water to a recharge facility
in Fresno, California (Nightingale and Bianchi, 1977). Application of water having a lower
specific conductivity (from 147 to 100 dS/m) induced dispersion of native inorganic colloidal
materials within the surface soils. The dispersed clays were then transported to the aquifer,
resulting in high turbidity within monitoring wells. It was estimated that 148 metric tons
(3.1 metric tons/hectare) of colloidal material moved out of the surface profiles into the
ground water in 1975 (Nightingale and Bianchi 1977), illustrating the possible magnitude of
colloidal transport. Gypsum applications were found to destabilize the colloidal suspensions
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effectively and clarify the waters (by flocculation). The influence of small-to-modest changes
in chemistry upon soil-aggregate stabillty and the magnitude of mass of the mdterial trans-
ported demonstrates the balance of forces operative within many soil/colloid systems.

Release of colloidal particles from sandstone formations during oil-field operations,
and the properties and factors servilig to generate and stabilize colloidal suspensions has also
been reported (Kia, Fogler, and Reed 1987). Particle-release was attributed to an ion-
exchange process on the surface of the clay particles, with slow release of fines observed
under low pH conditions. More theoretical studies on diffusional-detachment processes
(Kallay, Barouch, and Matijevic 1987), kinetics of particle detachment (Barouch, Wright, and
Matijevic 1987; Adamczyk and Petlicki 1987), colloidal stability of variable-charge mineral
suspensions (Bartoli and Philippy 1987), and precipitation-charge neutralization processes
during coagulation (Deutel 1988) have also been provided recently. Gschwend and Reynolds
(1987) reported on an aquifer system possessing monodispersed colloids resulting from in
situ precipitation. They postulated that phosphate- and carbon-rich wastewaters initially per-
colated into the shallow aquifer, where oxygen concentrations were sufficiently reduced by
respiration such that anoxic conditions were formed. Reduction of the indigeneous iron in
the presence of the high-phosphate loadings produced stable monodisperse vivianite parti-
cles approximately 100 nm in size. Ryan and Gschwend (1990) found elevated concentra-
tions of predominantly organic-coated inorganic colloids in anoxic (compared to oxic)
ground waters (up to 60 mg L ™! and < 1 mg L™, respectively) within an Atlantic Coastal
Plain aquifer in the Pine Barrens of southern New Jersey. They suggested that the anoxic
conditions resulted in the dissolution of Fe oxyhydroxides that coated the mineral phases,
acting as a cementing agent.

Penrose et al. (1990) reported the presence of 28?2%Py and *$Am in ground
water > 3,000 m down-gradient from the discharge, and these actinides were determined to
be associated with colloidal material between 25 to 450 nm in size. Based on the low-water
solubility, high-partitioning coefficients, and immobility demonstrated in laboratory experi-
ments, it was predicted that these actinides would migrate only a few meters from the dis-
charge, thus providing strong evidence for a colloid-facilitated transport mechanism within
the subsurface environment.

However, many published reports concerning the presence of colloids in ground water
have been received with skepticism, resulting from the inability to eliminate unequivocally
the possibility that the observed colloids were formed as an artifact of sampling.

A Conceptual Model for Colloid Transport

A general model to conceptualize colloid transport describes two phases: (1) detachment
and stabilization; and (2) transport processes with associated sub-processes (figure 10.9). The
initial condition for colloid migration must include the mobilization of colloid-sized particles
within the soil. The process is hypothesized to be both physically and chemically controlled.
Detachment of colloid particles from the soil matrix (la in figure 10.9) requires an energy
input sufficient to overcome van der Waals forces, coulombic, or other forces binding the par-
ticle. These forces could arise from: shear forces of water flowing within individual pores;
swelling or repulsive double-layer forces between colloids upon initial wetting, or due to a
change in chemical environment; or physical disturbance (e.g., agricultural tillage operations
or excavation). Emerson (1967) defined classes of soils that disperse spontaneously with wet-
ting, those that disperse only with mechanical energy input; and those which are nondisper-
sive; the majority of soils seem to fall into the mechanically dispersive category, requiring
some form of kinetic energy to initiate the dispersion process (Rengasamy et al. 1984; Miller
and Baharuddin 1986). Raindrops or irrigation hitting bare soils disperse large amounts of
colloidal clays, some of which enter the soil-surface with infiltrating water; the movement of
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Macropore e Figure 10.9 A conceptual model for colloidal-
facilitated transport via a macropore

low ionic-strength rainwater into soils may also dilute soil solutions and enhance colloid
mobility by increasing swelling and particle repulsion (McCarthy and Zachara 1989). Once
detached from the matrix, the particle must be stabilized chemically (1b in figure 10.9) in
order to avoid immediate redeposition via flocculation with other detached particles. Stabi-
lization is accomplished largely through development of double-layer repulsive forces.

The second phase involved in colloid movement within soil is a transport phase, deter-
mined by both physical and chemical forces. Pore sizes must be sufficiently larger than the
size of the particle to allow physical passage of the particle, or straining (2a in figure 10.9) oc-
curs. Deposition of particles can also take place under other circumstances: occlusion of
particles within micropores (immobile water) within the soil matrix (2b in figure 10.9) via
Brownian motion; sedimentation of particles, if flow velocity is sufficiently low compared to
settling velocity of the particle (2c in figure 10.9); and adsorption of the particle to the matrix,
due to electrostatic or other forces (2d in figure 10.9). The latter process can considered to be
largely chemical in nature, as charge characteristics of the soil matrix and particle control
adsorption. However, adsorption may occur via van der Waals forces in narrow pores during
unsaturated flow, where restricted water-film thickness increases the likelihood of particle
approach to surfaces. Quantitative modeling of these processes has been attempted using fil-
tration theory coupled with sub-models of specific processes described above (McDowell-
Boyer, Hunt, and Sitar 1986). Straining is often empirically related to the ratio d,/d,, where
d,, is the average matrix-particle diameter and d, is the average colloid diameter; ratios < 10
indicate little colloid penetration into the matrix, ratios in the range 10-20 suggest significant
straining and reductions in flow rate due to clogging, while ratios > 20 would result in limited
straining. In soils with a distribution of particle and pore sizes, such a parameter would obvi-
ously need to be modified to be a useful predictor. Diffusion of suspended colloids within the
flowing pore water can be described by the Einstein equation for Brownian motion

kT

S 10.131
ey (10.131)
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where the particle diffusivity (D,) is a function of the fluid viscosity (1) and particle diame-
ter (d,). At low-flow rates through small pores, this value is large enough to enable colloids
to diffuse to the pore wall into connecting micropores, leading to occlusion (2b in fig-
ure 10.9), or adsorption (2d in figure 10.9).

Both adsorption of colloids to the soil matrix and settling of colloids (2c in figure 10.9)
are highly dependent upon the surface and aqueous chemistry of the system. Particle settling
can be predicted as a function of particle size via Stokes Law, as balanced against the flow-
velocity of the pore water. Particle size, in turn, is critically dependent upon the chemical
environment in terms of flocculation/dispersion of the (initially) colloidal material (Van
Olphen 1977). The “thickness” of the electrical field surrounding the colloid (x7?) is deter-
mined largely by ionic strength of the aqueous phase (I), as those ions partially balance the
internal charge of the colloid

xte(VI) (10.132)

where c is a constant incorporating the dielectric constant, temperature, and charge of an
electron. Surface potential of the particle (i,) and of the soil matrix (i,,,), along with ion va-
lence z, particle diameter d,, determine the repulsive energy, o, forces acting between dou-
ble layers

o= (fgﬂ)wp g, In(1 — e (10.133)

where ¢ is the permittivity (8.85 X 107" C*> N "'m™2) and 4 is the distance of separation be-
tween particle and matrix, assuming surface potentials are roughly equal and < 50 mV. The
attractive energy between a spherical colloid and a flat-plate (matrix) can be computed as

follows:
htd,

T I e

where A is Hamaker’s constant and z is ionic valence (see chapter 3). The balance between
these attractive and repulsive energies is controlled by variation in the repulsive component,
which is highly sensitive to ionic strength of the aqueous phase.

In dealing with colloidal and subcolloidal organic molecules, adsorption to the soil ma-
trix is a major factor retarding movement; adsorption is driven by both enthalpic and eu-
tropic forces, although mechanistic interpretations of adsorption have not proved useful in
quantifying sorption behavior. Instead, a number of empirical approaches have been used,
particularly the simple approach of assuming a constant partitioning of the solute to the solid
phase:

(&
— 10.135

G (10135)
where the distribution coefficient (K ) is the concentration ratio of adsorbed (C,) to free (Cy)
solute; the well-known Freundlich isotherm is a modification of this relation, adding a curve-

fit exponential term to the equation

K,

Co= K (C) (10.136)
thus allowing fitting of curvilinear adsorption data. Batch-adsorption experiment data are
used to obtain K, and n, whose values can then be used to account for attenuation during
transport.

Approaches for quantifying attenuation and destabilization of migrating colloidal
suspensions, such as those given above, can be coupled with basic one-dimensional
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advection—dispersion flow equations to yield breakthrough curves under a given set of
boundary conditions. Parker and Van Genuchten (1984) offer a derivation of such an ap-
proach, and provide a useful integration of adsorption functions into the flow equations to
account for partitioning of the solute flow through a one-dimensional soil volume, by the fol-
lowing equation:

()2 () -39 we- (b n (2) o

where the major measured variables include solute concentration C, adsorbed solute in the
solid phase s, vertical distance z, time ¢, dispersion coefficient D, pore-water velocity v, soil-
bulk density p,, and volumetric-water content §. The u and y terms are (empirical) rate-
coefficients for adsorption/desorption processes affecting solute concentrations in the liquid
phase. The computer program CXTFIT (Toride, Leij, and Van Genuchten 1995) can provide
computations for fitting this model to measured concentration-versus-time data. Adsorption
parameters can be curve-fit, or varied independently to assess the fitness of the model as-
sumptions with respect to flow conditions. Further refinement of such an approach can in-
clude additions of terms to the right-hand side of equation (10.137) to incorporate coll<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>