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Spatial Variability, Scaling,
and Fractals

INTRODUCTION

In the previous chapters, traditional methods for investigating the unsaturated zone have
been discussed: the importance of physical properties; microscopic parameters such as the
double-layer theory; behavior of clays; water flow; gaseous diffusion; contaminant transport,
as well as other parameters. The concepts discussed in this chapter deal with treating and
analyzing the data gathered from unsaturated-zone studies. This discussion is meant to intro-
duce the reader to the basic concepts involved with some of the tools available to us for treat-
ing data, while incorporating the various methods used. Because of the importance of spatial
variability and understanding its importance in soils research, the reader is urged to study
other texts that discuss such material in detail; the same is true for geostatistics and fractals.

Geostatistics has been used for several decades, and precedes the advent of both scal-
ing and fractals. Indeed, it can be said that scaling begins where geostatistics ends; fractals are
somewhat similar to scaling, but are much more complicated. The advantage of using geosta-
tistics is the intuitive nature of the process, coupled with the fact that they provide a better
tool for analysis than simple statistics. Scaling and fractals are not as intuitive and therefore,
are more difficult to comprehend. However, they are additional tools in our arsenal for prob-
lem solving and as such, can be quite useful in various investigations of soils research. The
concepts discussed here aim at whetting the reader’s appetite to seek further knowledge
concerning the use of geostatistics, scaling, and fractals.

FREQUENCY DISTRIBUTIONS OF SOILS

As soils developed throughout eons of time, they became the product of the very factors that
helped to form them. These factors included such parameters as climate; parent material;
topography; microbial organisms; and time. Soils are heterogenous rather than homoge-
neous, simply because of the variability in their formation processes due to freezing, thawing,
shrinking, swelling, and so on (see chapter 2). The optimization of environmental resources
and resource allocation make it necessary to quantify soil spatial variability, and to deter-
mine the scale of its occurrences. The need to generate explanations of observable variabil-
ity and predictability through modeling efforts is addressed here. There are two categories of
variability for most landforms: systematic, and random. The classification of a given medium
into one of these categories is determined by the number of observations made. As more
observations are made, the existing variability naturally decreases in importance, and confi-
dence limits are smaller. In a strict statistical sense, the more the data distribution differs
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from a normal distribution, the larger the sample size has to be, for an adequate approxima-
tion. However, the cost of collecting large amounts of data is prohibitive and the number of
samples needed is greatly influenced by spatial variability. Thus, analytical expressions that
require simple solutions with a minimum number of samples are desired.

Because soils are variable, it is important to obtain an estimate of error associated with
the specific parameter we wish to measure. This is done with statistics, in which—for simple
estimates—the mean (average value of the parameter) and standard deviation (range of the
parameter) can be obtained easily. Mathematically, an estimate of the mean is determined by

2 X
m === 16.1
- (161)
where m is the mean, x; is measured values for the parameter, and 7 is the sample number.
An estimate for the standard deviation is given by

o= \/E((;‘l"%’;” (16.2)

where o is the standard deviation. For a homogeneous soil, o values between samples are
likely small, indicating that the properties of each of the collected samples are similar. How-
ever, if o values are large, the samples are likely dissimilar. This refers more to variance than
the mean; the mean can vary little between media types. An example of variance change is
the comparison of bulk-density values for sandy-textured soil versus a clay-textured soil.
While o is likely to be similar within each soil, it is just as likely dissimilar between soil types.
It has to be remembered that—statistically—the goal of analysis is an unbiased estimate of a
specific parameter.

Parameters routinely measured in soil include: bulk density; particle-size distribution;
soil-moisture characteristic curves; water flux; infiltration; water storage; hydraulic conduc-
tivity; and soil-water diffusivity. Here, we use bulk density as an example. If bulk-density sam-
ples are extracted from various depths within a research area, we might suspect—from a
knowledge of statistical analysis and changes in soil texture with depth and space—that there
is a distribution curve to describe the frequency of a given density to the number of observa-
tions or samples extracted. Figure 16.1 shows the frequency of distribution for bulk-density
samples extracted from a clay soil. The normal frequency distribution is mathematically
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described by

f=—F exp[——"w(x" 2_(;1)2]

where fis the frequency. For a normal curve, the center position of the curve is determined
by the mean of all samples extracted. Also, the less o varies, the sharper and narrower the
curve will be. Assuming a normal distribution, if a sample X were extracted at random from
the population, the chance (probability) that it would fall between two other points x; and x,
is expressed by

(16.3)

Py, <X=x)= f e (16.4)

x

Typically, some soil properties are also log-normally distributed. The frequency function of a
log-normal distribution is

1 {_ [In (v, — B) - mlz} (16.5)

f= a(x; — B)V2m i e

for x; > B and f = 0 for x; < B, where B is any constant to allow In (x; — ) to be normally
distributed.

Several statistical methods are used to represent the variability of a given parameter on
a relative basis such as the coefficient of variation {cv = (¢/m) * 100}. For example, both
saturated-water content (6,) and bulk density have a low coefficient of variation when com-
pared to textural analysis, and 6 at varied soil pressures that have a medium coefficient of
variation. Parameters such as saturated- and unsaturated hydraulic conductivity; pore-water
velocity; apparent diffusion; and electrical conductivity all have a high coefficient of varia-
tion. As variability increases, more samples are needed for adequate analysis. Also, those
parameters with high variability are likely log-normally distributed (owing to soil hetero-
geneity) while those of low variability have a normal distribution. As a result, most of the
spatial variability within soil is described statistically. To prove this, we use hydraulic conduc-
tivity as an example, and because K is generally more variable than p,.

Hydraulic conductivity is represented as a function of percentage of saturation, where
the coefficient of variation generally increases with decreasing percentage saturation. Hy-
draulic conductivity is treated by regarding the sampling area as a homogeneous soil mass—
in which case, both soil-water content and hydraulic conductivity are treated as two sepa-
rate experimental variables, measured at given intervals. In the latter case, we suppose that
30 samples are taken from six separate depths, giving a total of 180 samples from the area.
Using this approach, we consider the spatial variability of the sample area and wish to know
if—for an average value of § and its standard deviation—what is the corresponding hydraulic
conductivity (mean value) and its standard deviation? Remember that 6 most likely has a
normal frequency distribution, and K has a log-normal frequency distribution. We can deter-
mine for any particular 6, the corresponding value of K (both at steady state) as well as its
variability, by considering two independent variables, x; and y;; each is normal and their joint
distribution function is expressed as

R 9) = 5 [[ o0 | -E5 22 as, ay, (16.6)

By introducing two new variables x and y—both normally distributed and correlated—x and
y can be related to x; and y, by

x=m+ox, also y=m+rox +V1l-rioy, (16.7)
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These two equations are arranged such that the new variables x and y have means my and m,,
standard deviations o, and o,, and the correlation coefficient . Rearranging, we have

g ) (16.8)
%51
and
=) ]
.= —r + (16.9)
% 1—r2 gy )

Thus, the joint distribution function, as a function of the new variables, becomes

o _Q_(X,L)]
flx,y) = i fj D exp { > dx dy (16.10)
where
1 x—m)? 2r(x — m -m - m,)?
Q(x’ y) = e 2l:( 5 1) Bk ( 1)(y 2) + (y 5 2) :l (1611)
4 0y 010y a3
and D is the Jacobian
ax. . .dy
D= 16.12
. (16.12)
dx dy

The joint frequency function of x and y (Cramer 1955) is

_ 1 o(x, y)}
f(x’y) by 277_0_10_2 /1 e rz expl: 2
This is the general form of the two-dimensional, normal frequency distribution function. By
letting x = In z, we can rewrite the equation as

(16.13)

1 i
flz,y) = D T exp [_g(z_y)] (16.14)

where z represents depth of sample and

Q(Z,y) e I8 [(lnz o ml)z _ zr(lnz e ml)(y T mZ) + (y = m2)2:' (1615)
1-r2 @i 0,0, a3

Earlier we mentioned that K is log-normally distributed; by rewriting the log-normal distrib-
ution equation in terms of K at steady state (K,,) and setting 8 = 0 in equation 16.5, we have
1 (In'ke. ml)z]
K S e pRE N Ewe S TR el oA
7 = o ¢ Vo P [ 207
Also, because 6 at steady state (6,,) is normally distributed, we can rewrite the normal fre-
quency distribution (equation 16.3) as

(16.16)

ST 1 13 (Gss 5% m2)2:l
700 = o enp | - La ) (16.17)

The joint distribution function after equation 16.13 is

1 O(K,, 6 )]
= =TT S 16.18
P 00) = 5 enp [ -2 (1618)
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where

1 InK,—m)* 2r(nK, — 0, — 8., — my)’

0(K., 0,) = 2[( n R _ my)°  2r(n K, — m)(6, —my) (6 2’”2) } (16.19)

L= o1 . 0,0, o5

Combining equations 16.17-16.19, the conditional frequency function of K relative to
another steady-state soil-water content (6,,) is described statistically by

ss1

ro:
(K 0 1) 1 In Kss (L e 721(05.?1 & mZ)Z)
e = exp| — 16.20
f2(0ss1) O-les 2m Viloi— rz P 20-lssl(1 i rssl) ( )

Equation 16.20 is a normal frequency distribution function for K with the mean value
my = my + roy(8,; — my)o; " and the standard deviation o = oy(1 — r*)"/2 By letting & =
arithmetic mean of K and 7 = corresponding standard deviation, the following relations are
valid such that & =exp[m,+ 02/2] and 7=exp[m;+ 0%/2] [exp(c?— D2
As a result, we have an estimation of the mean and standard deviation of K relative to any
given soil-water content, based on frequency distributions. This statistical approach is an
appropriate method for a field study. Consequently, we see that the spatial variability of soils
and the samples extracted from them can be statistically treated, so long as an adequate
number of samples is taken. The number of samples are determined, assuming a normal dis-
tribution, from the following equation '
2o,
AP
where n is the required sample size, Z, is the value of the standardized normal variate corre-
sponding to the level of significance « (the value of Z, can be obtained from a cumulative
normal frequency distribution table), v, is the sampling variance, and d is the margin of error
expressed as a fraction of the plot mean. The information of primary interest to the scientist
is usually the treatment mean (the average over all plots receiving the same treatment),
rather than an average of a single plot or treatment area. Hence, the desired degree of preci-
sion is usually specified in terms of the margin of error of the treatment mean, rather than of
the plot mean. In this particular case, sample size is computed by

Zo,
n =
H(D’m?) — (Z2v,)

n (16.21)

(16.22)

where n is the required sample size, Z, and v, are as defined previously, v, is the variance be-
tween plots of the same treatment (i.e., experimental error), and D is the prescribed margin
of error expressed as a fraction of the treatment mean. As an example, suppose a researcher
wishes to measure the hydraulic conductivity within a research plot using extracted, intact
soil cores with a larger coring sampler. The researcher wishes to determine the number of
samples necessary to achieve an estimate of the treatment mean within 5% of the true value.
This researcher knows from previous studies that the following values can be used: Z, = 1.95,
v, = 5.043 (i.e., a cv of 28.4 percent), D = 0.05, m = 25 (the average number of samples the
researcher has taken in the past with a smaller sampler), and v, = 0.1832—estimated from
previous research. A sample size—number of cores required per plot—that can satisfy the
researchers requirement at the 5% level of significance is computed as:

~ (1.95)%(5.043) ~
" 005725y — (1.95%(01832) P




Geostatistics

Section 16.1 Frequency Distributions of Soils 529

Or, about four cores per research plot. Thus, by extracting an adequate number of samples, a
great deal of spatial variability is nullified, and while calculated frequency distributions do
not exactly fit measured values, they are a good approximation to work with when dealing
with the effects of spatial variability on collected data. It is beyond the scope of this text to
give a detailed treatise on statistics; the reader is therefore urged to consult a standard
college text on statistics for a more in-depth discussion of the subject.

QUESTION 16.1

You have been given the following ten properties for an in-situ media: bulk density; water content at
saturation; saturated and unsaturated conductivity; pore-water velocity; diffusion coefficient; particle-
size analysis; water content at —100 kPa; and the scaling coefficient. For which properties would you
expect a normal distribution?

The frequency distribution just discussed typically deals with statistics as associated with uni-
variate data and hypothesis testing. In some cases, it can extend to a correlation between two
variables and linear regression. Generally, in the discussion of correlation between variables
it is usually two different attributes that are considered. However, in the earth sciences we
often wish to make a treatment of the correlation between values of a single variable, mea-
sured at different points in space. The ability to analyze many such measurements against a
spatial framework is a necessity, and is where standard statistics are inefficient for obtaining
solutions to more complex problems.

For example, consider typical histograms of two data sets. Visually, we see little differ-
ence between the two, and a Kolmogrov—Smirnoff test for comparisons—from which the
sample data comes—would not reject (with a 5 percent significance level) a null hypothesis
of no difference between the two populations. However, suppose we have contour maps of
the same data. The first set of data shows a normal contour map, while the second set of data
produces a contour map that is “busier”—so how is it possible that the histograms look the
same? They look the same because the data were collected at the nodes of a regular two-
dimensional grid, but it is within the grids where the contour map shows one data set busier
than the other. Thus, the difference between the two contour maps is a reflection of the more
random spatial arrangement of data in the busier map; in other words, there is less correla-
tion between adjoining data pairs in the busier contour map. This is where geostatistics shows
a difference and hence, is more valuable as an analysis tool than statistics alone.

One of the first scientists to recognize the necessity of accounting for spatial correlation
between data was D. G. Krige (Journel and Huijbregts 1978). Krige derived empirically based
“regression weights” that could be applied to the grades of channel-ore samples used in the
estimation of slopes. Based on this work, others undertook a formal development of his the-
ories, and the field of geostatistics was born. As a simple definition, geostatistics is the statis-
tics of spatial- (or temporally) correlated data. It enables the scientist to measure spatial au-
tocorrelation and evaluate the nature and quality of raw data. Included in this discussion is
the term spatial variability; this is a common term used to indicate that geologic media and
soils—most of which are heterogeneous—change with space and time. Such properties in-
clude bulk density, porosity, soil texture, water content, pH, and hydraulic conductivity. Be-
cause soils are spatially variable, it is important to have tools with which to measure that vari-
ability. We have already discussed some of these tools, but there are others that we now
describe in our continuing discussion of geostatistics. (For an excellent treatise on spatial
variability, the reader is referred to chapter 13 of Hillel 1980.)
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Geostatistics incorporates data taken from a grid (usually square), with a unit spacing. Upon
analyzing the data, a histogram and contour map are usually generated. To describe the spa-
tial correlation between samples in near proximity, a semivariogram is used. This is a basic
geostatistical tool that allows us to visualize, model, and exploit the spatial autocorrelation of
a regionalized variable. The function of the semivariogram is half the average squared dif-
ference between data pairs of points that are separated by displacement, /. This can be cal-
culated by
N(h)
P(R) = —= SYE + )~ YEP (1623)
2N(h) i=1
where N is the number of data pairs in the region, and Y represents the value of the data at
location x;.

A semivariogram needs to be calculated for a variety of directions, to allow recognition
of anisotropic variability; for example, east to west and north to south. Commonly, neighbor-
ing sample pairs are closer in value than more separated pairs. Once an experimental semi-
variogram is obtained, it is modeled to obtain block estimates; usually, a spherical model is
used. However, there is no one “correct” model for a particular situation, so the semivari-
ogram of choice determines the amount of smoothing necessary in later steps. The accuracy
of the modeling process depends on the number of data pairs used in the calculations; on the
experimental semivariogram; and on the lag distance at which it is evaluated. The modeling
process is complicated and can involve: polygonal estimation; inverse-distance weighting; in-
verse-distance-squared weighting; estimation variance; confidence limits; as well as other fac-
tors. Since this chapter is an introduction to various tools used in the earth sciences, dis-
cussing these parameters is beyond its scope; the reader is referred to Hohn (1988),
Wackernagel (1995), or other texts on geostatistics.

We now understand that it is possible to rank any estimation regime to its efficiency by calcu-
lating the estimation of variance. However, for this we need to determine the best set of
weights for a particular block-sample configuration—that is, the set of weighting coefficients
that minimize the estimation of variance. The process of calculating this optimal estimation of
variance is called “kriging,” named after D. G. Krige, who pioneered the work of geostatistics.
Kriged estimates are used for drawing a contour map, such as for water-table depth. Since geo-
statistics are generally done on computers, the basics steps to computer contour mapping using
the kriging technique are: (1) collect data to estimate the variance; (2) superimpose data on a
regular grid; (3) interpolate values at each node on the grid; (4) construct contours; (5) smooth
the contour lines by splining or other techniques, if necessary; and (6) draw the contour map.

Beginning, we assume the regionalized variable under study has the value z; = z(x)),
each representing the value at the point x;. We also assume that this regionalized variable is
a second-order stationary, with expectation £

E[Z(x)} = m (16.24)

where Z(x) is the random variable observed at point x and m is the first-order moment. Three
second-order moments are also useful in geostatistics; these include the variance of the ran-
dom variable, the covariance, and the semivariogram function (discussed earlier). This is gen-
erally estimated by a centered covariance C

E{Z(x + h)Z(x)} — m? = C(h) (16.25)
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and a variogram
E{[Z(x + h) — Z(x)]}} = 29(h) (16.26)

where 4 is the distance from point x. The Kriged estimator—that is, a linear combination of
n values of the regionalized variable—is

n

G= S AE, (16.27)
=1

where A is the calculated weight. This ensures that the estimate is unbiased, and the estima-
tion variance minimized. When the kriging theory is met, we quickly interpolate values of the
sampling variable between measured points; then contour lines are drawn. Kriging allows a
determination of the estimation of variance, useful for determining uncertain values of the
function, as well as in subsequent sampling of the same area within the field. However, the
calculation of A and other parameters are beyond the scope of this text, so the reader is once
again referred to Hohn (1988) and Wackernagel (1995) for an in-depth treatise on Kriging
and geostatistics.

Because even the simplest calculations in geostatistics are performed on the computer
(they are tedious and unwieldy for large data sets otherwise), the practitioner needs to
be well-versed in some computer programs, as well as a variety of techniques in problem
solving; these include: univariate statistics; multivariate statistics; means; histograms; scat-
tergrams; semivariograms; variograms; interactive curve fitting; plotting; grid searching;
equation solving; contouring; and map drawing. We have mentioned only the main parame-
ters for a basic understanding of geostatistics here; others might include variogram cloud; var-
iogram and covariance function; extension and dispersion variance; measures and plots of dis-
persion; linear model of regionalization; Kriging spatial components; and many more.

A concluding note on geostatistics: while it is widely used in the earth sciences, it is not
the only tool for solving complex problems with large data sets. However, it is easier to
understand intuitively than other tools that we now discuss: scaling and fractals.

Power-Law Distributions

Random variables The concept of random variables is basic to modern statistics. A
function of a variable is a rule (mathematically speaking) whereby one or more numerical
values are associated with different values of a variable. For example, consider the function
f(x) = 2x + 3. If x = 0, then f(x) = 3, if x = 2 then f(x) = 7, and so forth. Assuming x is
a random variate, the probability density function of x, f(x), gives the probability that the
variate assumes the value x, that is, f(x) = Pr(x). If we distinguish between the name of the
variate (x) and the values the variate assumes, then f(x = x') = Pr(x = x). Usually, f(x) rep-
resents a model for the relative frequency (in the series of experiments), with which the vari-
ate x assumes specified values. These values normally vary both spatially and temporally, and
each quantity measured is termed a random variable. Since these values fluctuate, we need to
associate the random variable with a probability distribution, F(x). The probability that the
random variable x assumes a specific value x; is given by Pr(x = x;) = f(x;). The distribution
function, as a probability law, is given as

Prx <x) = F(x) = f " F(x) dx (16.28)
Thus, the distribution function of a random variable x represents a cumulative probability.

Any nonnegative function, whose integral over the entire range of the variate in the function
is unity (1), defines a probability density. Consequently, a random variable x is said to have a
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density function f(x) if
f " f(x) dx = Pr(x = x)) (16.29)

In science, the variation we measure is often defined as “measurement error.” It then be-
comes important to overcome variability due to sampling and environmental problems. As a
result, we need to use distribution functions to help interpret the data gathered. There are a
number of distribution functions for random variables that we discuss in reference to power-
law distribution, but for exact, technical detail on the evaluation of data fit to a particular
distribution function, we refer the student to a standard statistics text. An example of a cu-
mulative probability distribution is shown in figure 16.2.

For any given random variable, there is a probability distribution associated with it. If
we let the symbol x denote such a random variable, the symbol f(x) denotes the probability
density for x. Suppose the probability of the random variable x assumes the specific x;, this
can be expressed as

Pr(x = x;) = f(x,) (16.30)

It is important to remember that a probability measure on the random variable x is defined
by a function that has the following properties:

0=Prx=x,) =1
Pr(—o=x=w)=1 (16.31)
forx, >z, Pr(x; =xi=x) =:Pr(x =x)— Prix;=x)

The distribution for the random variable x is denoted by F(x). As a probability law, the
distribution is interpreted as that given in equation 16.28. In this instance, f(x) dx is the prod-
uct and defines the area of a rectangle with height f(x) and width dx, and is called the prob-
ability element. It is normally convenient to assign the range of a random variable as oo,
Thus, the density function is zero for all values of x = 0 and the probability density is defined

Figure 16.2 A cumulative probability
distribution
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as Pr(x) = f(x), hence Pr(x) = 0.The random variable is either continuous or discrete. The
distribution of a random variable is generally associated with parameters that are constants,
determining certain characteristics of the distribution. An example of the density function
and its relation to the distribution function is given in figure 16.3a. In figure 16.3b, the density
at the point x = x; is given by the height f(x)).

Log-normal distribution For log-normal distributions, the variable is a result of mul-
tiplication rather than a sum, as is the case for normal distributions (e.g., bulk density). Many
natural phenomena tend to follow log-normal distributions since the log-normal distribution
is not symmetric, and is defined only for positive x. For example (using hydraulic conductiv-
ity), suppose a researcher is extracting soil cores to obtain an “average” value of K over a
specific area. Variability in each sample can include soil type, bulk density, occluded pore
space, presence of cracks, or particle size. To obtain an average hydraulic conductivity, the
value of K for each core is summed for the whole. However, each of the factors of variability
influences the individual K value. Each value is therefore subjected to variability based on
the physical factors listed as well as the K value obtained for each core, and for all cores is
proportional to the product of all factors involved. As a result, the process is multiplicative
and the value obtained for K for each core is likely distributed log-normally.

For a probability density function (pdf), the log-normal pdf can be expressed as

(Inx - a)z}
exp [ 27
xBV2mr
Because x can be expressed only positively, P(x) approaches zero as x approaches zero. Since

the expected value of x, E[x] = exp (u + ¢*/2), and the sampling variance, Var[x] = exp
(2u + o*)[exp (u?) — 1] then, the coefficient of variation, CV is given by the expression

pgx) = (16.32)

CV = [exp (o) — 1]% (16.33)
We write the cumulative log-normal distribution as
% dx
Plx] = =l - /28 —— 16.34
b= [(e = lin () - wl/2p (1634)
@) Figure 16.3 (a) An example of the density

function, f(x), and its relation to the distribution
function, F(x;). (b) The area under the curve
corresponds to the probability, F(x;) — F(x,).

Fx)

Fx) = Flx;)
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For this case, the normal curve of error is mathematically expressed by

Plx] = % + N(%’f) (16.35)

QUESTION 16.2

For the properties given in question 16.1, how would you represent the remaining soil properties? What
makes a log-normal distribution more appropriate than a normal distribution for certain physical
properties?

Exponential distribution If f(x) = ye™ = 0 (where both x and vy are greater than
zero), the random variable is x, and the parameter is . We make the explicit distinction be-
tween the variable and the parameter by writing f(x|y) = ye™*. For y = 1, the probability
density is written as f(x|y = 1) = e™* (where x > 0). Consequently, the random variable de-
fined by this density is called an “exponential variable.” Also, the exponential distribution is
really a family of distributions; an individual member can be specified by assigning a numer-
ical value to the parameter . The distribution function for an exponential variable is mathe-
matically expressed as

Pr(x =x,) = J:if(x) dx = f:l ve ¥ dx (16.36)

An example of an exponential distribution is the Poisson distribution. Suppose we want
to study the emission of fast-moving neutrons from a neutron probe, for measuring soil
volumetric-water content. We can investigate either a single event or no event, with related
probabilities of AAx << 1 and 1 — AAx. In this study, Ax is so short that it does not contain
more than one event. Thus, if we consider a set interval Ax, the number of events within this in-
terval N(Ax) will follow the Poisson distribution, which can be expressed mathematically as

PHIN(AY) =] = ()‘Ax—ge%—

where k = 1,2,3, ..., Pr[N(Ax) = k] is the probability of finding k events within Ax (also
written as 6x), and A is the number of events per unit time, such as the neutrons being emit-
ted from a probe (assumed constant).

(16.37)

QUESTION 16.3

(a) Explain the difference between sampling error and measurement error. (b) What is the difference
between statistical true value and scientific true value? (c¢) between scientific bias, measurement bias,
and sampling bias?

QUESTION 16.4

Why would someone purposely choose a sampling method that has a lower precision over a method
having a higher precision?

16.2 SCALING AS A TOOL FOR DATA ANALYSIS OF PHYSICAL PROPERTIES

Scaling is a physical or geometrical difference between soil types or parameters. It is also de-
fined as a statistical difference between soils and related parameters; a mathematical defini-
tion can also be applied. Miller and Miller (1956) introduced the “similar media” concept. In
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Figure 16.4 Example of shifted
reference curve

Reference

Shifted Reference
-~

principle, this concept allows description of soil-water behavior in one soil from either ex-
perimental or computed data; in another by employing reduced variables defined in terms of
appropriate microscopic characteristic lengths. Basically, similar media differ only in the scale
of their internal microscopic geometries, and thus have equal porosities—that is, scaling.

Scaling is used to simplify the description of the statistical variation of soil properties.
By this simplification, the distribution of spatial variation is described by a set of scale factors
a,, relating the soil hydraulic properties at each location r to a representative mean.

Tillotson and Nielsen (1984) refer to functional normalization as an empirical method
to determine scale factors. Its objective is to coalesce all relations in the set into a single ref-
erence curve that describes the set as a whole; the resulting scale factors have no physical sig-
nificance. For example, consider two curves, 1 and 2 (see figure 16.4):

e (16.38)

y, =ax + b,

where x and y are variables and a and b are constants. The reference curve is defined such
that

Veet = ax + bref:bref = Vet — X (1639)
and
bres bes
=" g, =X (16.40)
1 bl 2 b2
then
Y1:ax+*re—f yi=ax+ y—ax
a
: : (16.41)
=ax 4+ =L . =
Y, = ax @ Y1 = Vret

By performing this operation, both curves are coalesced to the reference curve (see figure
16.4), or a distribution set u,. For example:

b, =15
b= 5
b = 10

ref

o = 10/15 = 2/3

e },La=4/3 (16.42)

@
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Figure 16.5 Similar media (after Miller
and Miller 1956)

Void space

Grains

Now, by normalizing the a-distribution set u, = 1.0 by
Ny

o=—F—=8/3 (16.43)
2 @;
i=1
thus, evaluating equation 16.27 at a distribution set, u, = 1.0 and b,
152%2/3« 3l
S 2| u, =10 A
o mR e b TS :
Eean 2

In doing so, we have shifted the reference curve (see figure 16.4)!

Similitude analysis (similar media) gives physical significance to the scale factors.
Miller and Miller (1956) introduced microscopic length, and according to their concept, soils
are similar if they are geometric scales of each other—that is, all the microscopic geometric
details of the one medium could be multiplied by a constant to obtain the microscopic details
of the other medium. The microscopic length characteristic is denoted by A and could be de-
scribed as: (1) average grain size; (2) average pore diameter; (3) maximum grain size;
(4) maximum pore size; and (5) also, by combinations of 1 + 2 and 3 + 4. An example of sim-
ilar media is depicted in figure 16.5. For further examples, we look at both capillary rise (de-
scribed by the Laplace equation) and Poiseuille’s law.

From the Laplace equation

2
AP=pgh=TG

(16.45)
where P is pressure, p is fluid density (m® kg™ ), g is gravitational force constant, /4 is height
of rise (L), o is surface tension (mN m™!), and r is the maximum radius (L) of the water-filled
pore. Equating r with A, the scale factor between the two soils is given by a = A,/A;.
If « = 2—the maximum water-filled pore radius of medium 2 is 2x as large as that of
medium 1—then AP is 2x as small, or |/| is 2x as small. Corresponding retention curves for
similar media 1 and 2 using this concept gives equation 16.46, with a graphical representation
shown in figure 16.6.

h
hA = kN h ="

ar
where A, is reference pressure head, 4, is the average pressure head, and e, is the scaling
coefficient. From Poiseuille’s law we have:

K.(0) = r*=f(n,l,AP, g)

(16.46)

(16.47)
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Figure 16.6 Corresponding moisture-
characteristic curves for similar media 1
and 2

where K, is the hydraulic conductivity at point 7 (i.e., the reference), 7 is the number of pore
classes through which flow takes place, and / is the length of the material through which the
fluid flows. In this case, if « = 2,then K of medium 2 will be 4x as large as that of medium 1,and
K, _K ( /\2)2
—=—7 K, =[—*]*K (16.48)
AR o
or
Ei=alK, (16.49)

where the scale factor «; is the characteristic length of medium i and (see figure 16.7).
From equation 16.46 and 16.49, we derive for sorptivity (S) such that

S, = VK;h(A6)
S, = VE,(A6) (16.50)

S, = afK (L) a0; 5= 5,a"
(84

In other words, soil-water transport characteristics of a set of soils are connected through
scale factors. Thus, by collecting retention data of a soil set, we automatically infer conduc-
tivity, diffusivity, and sorptivity relations. An example of scaling of 6(%) and K(6) is shown
in figure 16.8 (Warrick, Mullen, and Nielsen 1977). This is physically described by setting
r=1,...,Rlocations and i = 1,..., I pressure increments for which 6(%) is determined, such
thats = 6/6, where 0 < s < 1 (similar media:equal porosity) and &,, = a,A,; thus

o +a,+ o+ oap
R
h, = logh,, = a, + a;S + a,5* + a,5° (16.51b)

S8 = 3 [Aa(S) — a,h(SHP (16.51c)

= 1.0 (16.51a)
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Figure 16.7 Scale factor o; for K versus §
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Figure 16.8 Example of scaling (k)

088[

where equation 16.51b is the reference curve. Further, we want to minimize SS as close to
zero as possible; if it’s zero, then SS is exact so scaling is exact. The basic steps are: (1) esti-
mate 4,,(s) by multiple linear regression technique, that is, SAS, LMSL, and so on; (2) find «
by minimizing equation 16.51c subject to 16.51a; (3) find new h,,(s) such that

log [A,,(S) = log [a,h,(S)] = a; + a;S(i) + a,S(i)* + a,S(i)° (16.52)

and (4) repeat steps 2 and 3 until SS no longer changes.
Following this brief introduction to scaling, a generalized definition is helpful in under-
standing the concept. To that end, we use that of Shouse et al. (1989): “Scaling is a systematic

r
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method for specifying a change of variable that transforms one system to another one with
more desirable traits.” Scaling works very well for many problems where the soil is homoge-
nous on a large scale. Additionally, scaling can be applied to systems where there is a separa-
tion of scales. For example, a soil can be heterogeneous at a small scale, but if viewed at a
large scale, it appears homogeneous. The reason for this is that the averaging is large com-
pared to the scale of heterogeneity.

In addition to using scaling as a tool for transforming systems, we now develop new
conceptual models by using the concepts provided by fractal mathematics, especially in the
way we investigate heterogeneity. For example, Feder (1989) uses the coastline of Norway to
illustrate length in the fractal dimension. Every time the resolution is increased on the coast-
line, there is a subsequent increase in its measured length—that is, the length continues to
increase on at least several smaller “recursive” levels. Because the outline of the coast is het-
erogeneous, this model is referred to as a “self-similar” process. A primary characteristic of
the coastline of Norway (or of fractals) is that the image we observe generally looks the same
at almost any scale in the real world. This property is referred to as “fractal scaling.” Thus,
scaling and fractals are closely related. The main advantage of fractal scaling is that tradi-
tional scaling techniques cannot be applied to materials that exhibit fractal scaling—such as
physical description of topographic relief—to the development of consistent theories on
both the formation and nature of fluid turbulence. Since a great number of shapes and
processes directly affect soil and geologic formation, it is logical to apply the tools of fractal
mathematics to the variability of hydraulic properties of soils and aquifers.

16.3 THE FRACTAL DIMENSION

This section is written to provide a brief introduction and overview of fractals, and some in-
sight on how fractals facilitate the description of fluid flow and contaminant transport
through soil, as well as other physical processes in soil. As a tool, it is much more suitable for
these parameters than geostatistics. A complete description of fractals is not the objective of
this text, so the reader is referred to the References section (at the back of the book) to gain
more knowledge on the subject. Benoit Mandelbrot proposed the concept of fractal
geometry in 1975 and since that time, fractal geometry has been used to render drawings of
the surface of the planet Mars, trees, fractal shapes, paintings, movie scenes using computer
graphics, and fluid flow and displacement. Indeed, computer programs using fractal genera-
tion have even been written to portray entire cities accurately. By running these programs, an
individual can visit a given city via computer, and when he or she travels to that city in per-
son, is already familiar with major streets, parks, restaurant locations, and other areas. The
accuracy is phenomenal.

Prior to the development of fractal geometry, traditional Euclidean geometry was used
to describe objects. What is the difference between the two forms of geometry? A compari-
son reveals that Euclidean geometry is:based on a characteristic size or scale; works well in
describing man-made objects; and is described by formulas—while fractal geometry is inde-
pendent of scale; appropriately describes natural shapes; and is described by recursive
algorithms. What is a fractal? By definition, “a fractal is a set for which the Hausdorff—
Besicovitch dimension strictly exceeds the topological dimension” (Mandelbrot 1982).
However, since this definition is a bit rigorous for the uninitiated, a more aptly put, simple
definition is that fractals are repeating patterns—that is, by looking at the whole, many small
parts, similar in appearance to each other and to the whole, make it up. Some of the best ex-
amples of fractals in nature are clouds, trees, and mountainous landscapes. With the advent
of fractal geometry, during the last decade we have incorporated fractal mathematics with
both computer and natural sciences, and it has quickly become a necessary tool in physics,
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soil science, hydrology, and other natural sciences. Applications of fractals in soil science
have recently been reviewed by Perfect and Kay (1995).

Triadic Von Koch Curves

The triadic von Koch curve (often called the snowflake curve) is a good example of the frac-
tal dimension (D), where D > 1. The construction of this curve is either recursive or itera-
tive. A line segment (termed the initiator) is divided into thirds, while the middle segment is
replaced with two equal segments, forming an equilateral triangle. This process yields a line
segment composed of 4/3, called the generator. This generator segment is iteratively applied
to itself to generate the von Koch curve (see figure 16.9). At the beginning, the initial
straight-line segment has n = 0, while the generator has n = 2 (once applied); before appli-
cation, n = 1 for the generator. Thus, at any iterative portion of the generated curve at any
stage n, we have a prefractal; by applying a reduced generator to all segments of a generation
of the curve, a new generation is obtained—such a curve is called a prefractal and, each small
portion, when magnified, reproduces a larger portion, exactly. As a result, the curve is invari-
ant under changes of scale, much like a coastline or outline of a rough rock. Generation of
the curve on a computer can squeeze an infinite length into a finite area without the curve in-
tersecting itself. This denotes the concept of self-similarity and is one of the fundamental,
central properties of fractal geometry.

Self-Similarity and Scaling

Because the original line segment is invariant with respect to both translation and scaling, the
expression for D is easily obtained. For the von Koch curve, the length of the prefractal (the
nth generation) is expressed mathematically as

L(s) = (g) (16.53)

N Figure 16.9 Example of the triadic von Koch
InitiatorRERr=i0 curve showing the initiator and generator
(data from Peitgen and Saupe 1988)

Generator n =1
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where L is the line segment of length (8) and # is the iterative step of the curve generation.
The length of each small segment of the line can be expressed as § = 37", thus # (the gener-
ation number) is written as

In 6
=i 16.
n e (16.54)
Consequently, the length is expressed as
_ (4 _ _ln6[ln4—ln3]>_ Jaisi
L(5) = (3) = exp ( i =6 (16.55)

where D = In4/In3 ~ 1.26. We state that the number of segments in the line is N(§) = 4" =
473 and is written in the form N(8) = 8, where D is the fractal dimension, 1.2628 for the
triadic von Koch curve. As we see, unlike the more familiar Euclidean dimension, the fractal
dimension need not be an integer.

If points are specified in some space, using the Cartesian coordinate system, the loca-
tion of a line drawn through a certain point can be determined. Likewise, if the length scale
is changed in the positive direction by the same factor () for all components of x, then a new
system of points can be mapped. Also, if the second set of points is adjusted by a factor
(1 — r)x, the original set of points can be retrieved. With this reasoning, a plane is invariant
under translation in that plane, as well as uncertain change of scale or length of scale. There
is also statistical self-similarity in which, upon magnification, the segments of a line look
alike, but are never exactly alike at different scales. For example, if we consider a coastline,
as did Feder(1989), the more closely we follow the smaller indentations or curves, the longer
the coastline becomes. In this case, each smaller section of coastline has the same appearance
of the whole coastline, but not exactly. Thus, the total length of the coastline is the yardstick
8 multiplied the number of measurements of size A, N(8), in measuring the coastline—that is,
coastline length = A - N(8), where N(8) varies on the average of §~2 and length: aA - § 2 =
8P~1. Here, D > 1 and as the length of the yardstick used to measure the coastline length de-
creases, coastline length increases. For real coastlines D is about 1.15 to 1.25. Consequently,
the similarity dimension D, is

In N
D _ —
; In A(N)

This similarity dimension is relatively easy to determine for self-similar fractals such as the
von Koch curve and its variants. The basic values to know for fractal dimensions are those for
the set of points that make up a line in ordinary Euclidean space D = 1, for the set of points
that form a surface in space D = 2, and for a ball or sphere D = 3.

Considering the von Koch curve to be the graph of a function f(f), a scaling ratio of A =
(1/3)", where n = 0, 1,2,.. ., the property of the Koch curve is f(A) = A%f(r) where the scal-
ing component a = 1. Because f() is not a single value, the scaling relation is true for any
point within the set. The power-law function f(z) = br*, the same type of construction used
on functions defined over all real positive numbers, satisfies the homogeneity relation
J(At) = A*f(2) for all positive values of the scale factor A. This function, and functions that
satisfy this relation, are termed scaling.

(16.56)

The fractal dimension of the coastline example is determined by covering it with a set of
squares of edge length 5—the unit of length equal to the edge of the box width. The number
of squares required to cover the coastline yields N(8), from which the fractal dimension is
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b Figure 16.10 The box dimension and its
Og g . .
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determined by finding the slope of In N(8), plotted as a function of In & (see figure 16.10). This
is an alternative definition of the fractal dimension, and is useful because the similarity
dimension is of no value for either statistically self-similar or scale-invariant objects; this is
because the “box” dimension measures how much space is filled by a geometrical object. The
number of boxes required to cover a set S, if the entire S is contained within one box of size
8 0 1S glven by

i 81’[18)( 2
Noox(8) = { =% (16.57)

or N,.(8) is proportional to § 2 (figure 16.10). This definition of box dimension is one of the
most useful methods for estimating fractal dimension. For small sets, § can be greater than
the spacing between specific points, but less than the range of the set. If § is less than the
range of the set or greater than the spacing between the points, N(§) = 8° (single point), 5~
(points on a line), and 62 (an even distribution on the plane). The box dimension is conve-
niently estimated by dividing the E-dimensional Euclidean space containing the set into a
grid of boxes of size 87, , and counting the number of boxes N,_,(8) that are not empty.

The length spanned by a line is also measured and since the line is straight, the dimen-
sion thus measured is termed the ruler dimension Dy (to be discussed later). If the measured
line is fractal, L(8) depends on the length characteristic 8, such that L(8) =~ 6!~2# From the
previous definition, D = 1 if the line is smooth, suggesting L(5) is constant for all values of
8, and the length of the line is simply L(8) = 8/N(8). Based on the discussion on dimension,
the fractal dimension is unique, and is simply the dimension explained by the most advanta-
geous way to measure it. This, of course, depends on whether or not we measure a one- or
two-dimensional plane. It should be noted here that the box dimension is widely accepted,
easily used, and is close to the Hausdorff-Besicovitch fractal dimension, mathematically
expressed as

0. f0r 1 =5
M, =, y(d)8? = y(d)N(8)8" S or (16.58)
oo for- ‘d'<'D
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where M, is the d-measure of the set and its value for d = D is often finite, but can also be
zero or infinite; y(d)8“ is a test function h(5), and represents a disk, line, cube, square, or ball.
If we have a line, cube, or square, the geometrical factor y(d) = 1;y = /6 for spheres; and
/4 for disks. The position of the jump in M, as a function of d is most important. Also, D in
the Hausdorff-Besicovitch dimension is a local property because it measures properties of
sets of points, in the limit of a decreasing size § of the test function used to cover the set; D
can therefore, depend on position. However, the Hausdorff-Besicovitch dimension is very
difficult to compute for a real-life data set and therefore is of little functional use.

16.4 FRACTAL CONSTRUCTION
Fractal Dimension 0 < D < 1

Both triadic and quadric cantor dust are examples of fractals of dimension 0 < D < 1, and
are also classified as “exactly self-similar” fractals. Exactly self-similar fractals are sets of
points that cluster on a line segment, but do not fill that line segment. To construct the triadic
cantor dust, we begin with a line segment of unit length (n = 0) and divide it into three equal
parts. Now, eliminate the middle (central) third (n = 1) and repeat this procedure on the two
remaining line segments (n = 2);repeat the procedure as many times as desired. It is readily
apparent that as n — o, the points cluster on the line segment of unit length in which their
dimension is greater than a single point, but less than the dimension of the line segment of
unit length. The dimension of the triadic cantor dust is

_log [N(8)] _ log (2) _
= Tos (1/5) = log 3) = "1 (16.59)

Here (as discussed earlier), the initiator is a line segment of unit length, the generator con-
sists of two segments (8 = 1/3) that contain N(8) = 2 copies of the original. The construction
of the quadric cantor dust is similar except that the two segments of the line are § = 1/4,
which yields a D; = log (2)/log (4) = 0.500.

In the above example, the central portion of the line segment was removed to create
exactly self-similar fractals. By removing one-third of the line segment at random, the recur-
sive construction is also randomized, and scale invariant—or statistically self-similar—frac-
tals are constructed. By use of power-law distribution, a sequence of power-law-distributed
gaps is generated. If a speck of dust is placed between each of these gaps, a cantor dust of any
fractal dimension can be constructed. For cantor dusts, it is important to remember that the
fractal dimension is really a measure of the degree of clustering on the line segment. Thus, if
the dust is highly spread out, the fractal dimension is near zero, and as the dust tends to
cluster along the line segment, the fractal dimension is near 1.

Fractal Dimension 1 <D < 2

Earlier, we discussed the von Koch curves and how finer and finer detail is recursively added,
an example of fractal construction beginning with an object of a lower dimension than the
fractal dimension sought. Another way to achieve a desired fractal dimension is to begin with
an object (volume, surface, etc.) that has a larger dimension than the fractal dimension de-
sired, and cut holes in it until the desired dimension is obtained. Examples of this type of
fractal dimension are the “Sierpinski gasket” and “Sierpinski carpet.” The Sierpinski gasket
is recursively generated using an equilateral triangle as a generator, and an initiator that has
the central portion of this equilateral triangle removed. Sierpinski curves arrive from an
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Various levels of a Sierpinski gasket (data from Barnsley et al. 1988)
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infinite number of generations of prefractals to leave a fractal curve; this fractal curve was
obtained from the Sierpinski gasket (figure 16.11).

Sierpinski carpets have been used as models for the study of soil-water retention,
Stokes’ flow, pore geometry, pore-volume distribution, and other physical phenomena in
soil. The relations to flow in soil is discussed more fully later. A simple way to obtain a
Sierpinski carpet is to take a whole surface and randomly cut holes in this surface, where
the holes cut have a power-law size distribution. For this case, the initiator contains N(§) = 3
duplicates of the original line segment of size & = 1/2 thus, the similarity dimension is D, =
log (3)/log (2) = 1.59. Unlike the Sierpinski gasket, the Sierpinski carpet (see figure 16.12) is
recursively constructed beginning with a unit square, in which the generator is a square with
the central square removed. The initiator contains N(8) = 8 duplicates of the original line
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Figure 16.13 A Menger sponge shown with
its initiator and generator (data from Barnsley
et al. 1988)

Initiator Generator
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Menger sponge

segment of size § = 1/3. As a result, the similarity dimension D, = log (8)/log (3) = 1.893.
Both of these are examples of exactly self-similar fractals, and the pattern of distribution for
holes within each type follows a power-law distribution.

Fractal Dimension 2 < D < 3

An example of this fractal type is the Menger sponge (see figure 16.13), which is a volumet-
ric analog of the Sierpinski carpet. As we might suspect, the initiator is a unit cube divided
into 27 smaller cubes to form the generator, and then 6 of the small cubes are removed from
the center of each face, as well as the small cube at the center. Each of these smaller cubes is
of size § = 1/3. The generator possesses N(8) = 20 duplicates of the original segment. The
similarity dimension is D, = log (20)/log (3) = 2.727; fractal dimensions can—and will—
vary considerably for different materials.

16.5 SELF-SIMILAR FRACTALS: ESTIMATING THE FRACTAL DIMENSION

Now we discuss measuring the fractal dimension of self-similar fractals. As with self-affine
fractals, we measure a characteristic of a data set that is related through some sort of power
law to a length scale and as before, the results are plotted on a log-log scale. It is important to
remember that more than 200-300 discrete measurements are needed at a variety of length
scales, in order to make certain the data set has scale-invariant characteristics. From a physi-
cal viewpoint such as water flow or contaminant transport, it is important to obtain the frac-
tal dimension because it can correspond to the effects of various physical processes that
occur in soil. A partial list of fractal dimensions for various materials is given in table 16.1.
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TABLE 16.1 Fractal Dimensions for Various Geologic Materials

Description of material Fractal dimension
Upper Columbus dolomitic rock (Bellevue, Ohio) 291,
Granitic rock (SHOAL nuclear test site, Nevada) 2.88
Soil (kaolinite, trace halloysite) 2.92
Porous silicic acid 2.94
Coal-mine dust from western Pennsylvania 2.52
Mosheim high calcium (Stephens City, Virginia) 2.63
Niagara (Guelph) dolomite (Woodville, Ohio) 2.58
Soil (mainly feldspar quartz and limonite) 2.29
Aerosil—nonporous fumed silica (Degussa) 2.02
Madagascar quartz from thermal syndicate 2.14
Graphite—Vulcan 3G (2700) (National Physical Laboratory, 2.07
Teddington, United Kingdom
Iceland spar, massive (Chihuahua, Mexico) 2.16

Source: Data from Avnir, Farin, and Pfeifer (1984).

This measuring technique is so termed because boxes of linear size 6 are used to measure a set;
these boxes usually form a grid. The number of boxes required is termed N(8) and the dimen-
sion has the relation N(§) = §~” (defined previously). The general technique is to count the
boxes required of size 8, to cover the set of a range of values of 6. Then, —D (the slope) is ob-
tained by plotting log,, N(8) versus log,,8 . As with the previous measurement techniques, if
the set is fractal, the plot is a straight line with a negative slope equal to —D. For evenly
spaced points on alog-log plot, the size of the box chosen follows a geometric progression.

The point dimension—also referred to as the pointwise, cluster, or mass dimension—allows
us to count the number of points within a set that has been encompassed by a circle of radius
r.In this case, the circle does not include the entire set, but only that part of the set that fits
within the defined radius. To imagine this, we draw a set of points in a straight or curving line,
and select a circle of radius r to encompass a portion of the points, as in figure 16.14. This can

Figure 16.14 Exploded view of a point
° dimension

® wry=r



Section 16.5 Self-Similar Fractals: Estimating the Fractal Dimension 547

also be done on a plane. The mathematical relation is
m(r) = —= (16.60)

Since P is the number of points in the entire set, the mass is 7(r) within the circle of defined
radius r, and the number of points within the circle is P(r). The mass within the circle is pro-
portional to r in one dimension, and r? in two dimensions. In real-life soil applications, a be-
ginning measurement point (preferably at the center) is selected and circles of increasing ra-
dius are used to measure the mass m(r). The next step is to plot log,, m(r) versus log,, r that
follows a straight line if the set is fractal, as described in previous measurement methods. The
relation for the mass in this case is m(r) =~ r?, where D is usually written D, to denote point
dimension. This method is particularly applicable to sets that have a radial symmetry—that
is, diffusion-limited aggregation (DLA).

Ruler (Divider) Dimension

An excellent example of the “ruler” dimension is the measurement of a coastline, given by
Feder (1989) and other authors that describe fractal measurement. If we observe a world
map and investigate the coastline of any country, at first glance it appears relatively smooth.
However, upon closer inspection the mouths of rivers, bays, and various tributaries and fea-
tures become more prominent. By the same example, if we use a ruler of length §, the length
of the coastline can be conveniently measured. If the ruler length were large—except for the
basic outline of the coast itself—the detail of the various topological features (discussed
above) is lost. By decreasing the ruler length &, more detail of the coastline is apparent. The
total length of the coastline is also increased because of this detail. The ruler dimension is
normally expressed as Dy and is expressed mathematically as

L(8) ~ 81D« (16.61)

where L(9) is the length of the coastline (or measured) object by the ruler (or divider) of
length 6.

If the line is Euclidean, D = 1, the overall length is independent of & if  is sufficiently
small compared to the measured object. However, if the ruler fills the space completely, the
length of the line is linearly related to the ruler length. Once L(8) has been determined by a
ruler of length &, we can plot the log,, L(8) versus the log,, & if the line is fractal, the plot will
follow a straight line as before. The plot has a negative slope equal to 1 — D . We note that
the log-log plot of the measured length shows no sign of reaching a fixed value as § is reduced.

Perimeter—Area Dimension

If we imagine a set of natural, yet geometrical, objects within a two-dimensional plane (e.g.,
tree leaves floating on the surface of a pond), we can parameterize the leaves as a group of
Euclidean objects with area A and perimeter P. We can prove that A and P of each leaf
within the group is related by
P2
A=mt=—= p?
4 (16.62)
P=2mr=rvVad =~ VA
where r is the radius of each leaf. Also, because r is independent, the proportionality between
the area and perimeter is independent of r. If the perimeter of the leaves is fractal, then the
relation of A to P is
= 2/DP~A =~ 2
b & (16.63)

P = [‘\/Z]DP—A = ADP—A/2
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where Dj,_, is the perimeter-area dimension. Plot log,, A versus log,, P on the vertical ver-
sus horizontal axis; if the set is fractal, the slope is equal to 2/Dp_, in the positive direction.
This is accomplished by using é at a fixed, small finite scale or resolution.

16.6 SELF-AFFINE FRACTALS

The coastline example discussed earlier is statistically self-similar for any given value of the
scaling ratio r, as well as for all scaling ratios between some minimum and maximum cutoff
values. For these types of fractals, the box-counting method is used to estimate the fractal di-
mension. In nature, however, various cases of interest are not self-similar. For example, the
motion of a Brownian particle has different physical quantities for both position X and time
t. As a result, these two quantities do not scale to the same ratio, and the related fractal is
termed “self-affine.” The parts of these fractals need to be rescaled, by different ratios in dif-
ferent coordinates, to resemble the original. Mathematically, a bounded set S is self-affine
with respect to a ratio vector such that 7 = (ry, . . . ,rg) if S is the union of N nonoverlapping
subsets S, . . ., Sy. Each set has to be congruent (i.e., the set of points S, is identical to the set
of points r(S) after possible translations of the set) to the set 7(S), obtained from S by the
affine transform defined by r. The affine transform converts a pointx = (x;, . . . ,xy) into new
points where the scaling ratios r, . . . , 7 are not all equal such thatx’ = (r,xy, . . . ,rgxg). In
these equations, the subscript E refers to the Euclidean dimension.

Hurst’s Empirical Law (Exponent H)

From a lifetime study of the Nile River, Hurst (1951) invented a new statistical method for
analysis termed the “rescaled range analysis” (R/S analysis). After investigating river dis-
charges, mud sediments, and other natural phenomena surrounding the Nile, Hurst used the
dimensionless ratio R/S for data analysis, where R is the range and S is the standard devia-
tion. During years of data collection and analysis, Hurst developed the following mathemat-

ical relation:
R fey
E = (1) (16.64)

where H is the Hurst exponent and 7 is the number of years (number of tree rings, number
of times a coin is tossed, and so on). Actually, 7 can be thought of as the number of observa-
tions. If we consider a self-affine fractal such as the Devil’s staircase (Feder 1989; see figure
16.15), we obtain an exact copy of the original only by scaling portions of the curve by dif-
ferent factors, such as r, = 3 in the x direction and r, = 2 in the y direction. These are the

Figure 16.15 Illustration of the “Devil’s Staircase”
(data from Feder 1989)
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rescaling factors that can be rewritten to obtain the Hurst exponent H, such that r. = rand
r, = r¥. Solving for H yields
_log(r)
-~ log ()

which is the general form of the equation and for which H in the Devil’s staircase example is
0.631—that is, log (2)/log (3). Also, because r, is written as a power of r,, the relation is scale
invariant (i.e., independent of length). The standard deviation S is given by

T 1/2
s=(;3 10 - @) (16.66)

=
where 7 is the window (period) of time over which the observations are taken, £(¢) is the spe-
cific time and value of an observation, and &, is the average (or mean) value of observations
for the time over which all observations are taken. From data gathered by Hurst, S is about
0.09 and is (as a rule) symmetrically distributed about a mean of 0.73. Hurst also shows that
for numerous natural phenomena, H > 0.5. For statistically independent processes with
finite variances in the absence of long-term statistical dependence, R/S = (w7)'/2 it is also
asymptotically proportional to /2.

(16.65)

Brownian Motion and Random Walks in One Dimension

Consider the tossing of a coin. Each time the coin is tossed, there is a probability p = 0.5 of
that coin being a head or a tail. Thus, if we assign a value of +1 for heads and —1 for tails, we
can obtain a record of the trace of the compilation of tosses made (see figure 16.16). This is
analogous to a particle moving on a line (assume the line is the x-axis), on which the particle
jumps a step-length of +¢ or —¢ for a given time interval ¢ (time interval in second, minute,
hour; sometimes referred to as “collision time” in random walks). Such a stepping motion is
referred to as a “random walk” (or Brownian motion) just as can be seen observing floating
dust particles against a dark background. In one dimension, the random walk takes place
only in the vertical coordinate. Also, the displacement of the individual particle in the given
time interval is independent of the displacement of the same particle during another time in-
terval. By consideration of itself, Brownian motion is self-similar; however, when considering
particle position as a function of £, Brownian motion is self-affine. In the latter case, the Hurst
exponent H = 0.50.

Considering a Gaussian distribution of zero mean, Brownian motion is a random walk
in which the length of each step has nothing to do with the length of a neighboring step.

L5 Figure 16.16 A compile
Heads trace of coins tosses (data
from Feder 1989)
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Consequently, the normal probability distribution (npd) is given by

1 He
p(, 1) = Vi &P <_H> (16.67)

where D is the diffusion coefficient given by the Einstein relation

1
Do) (16.68)

The parameter (€°) is the mean-square jump distance. The Einstein relation is only valid
under general conditions—that is, jumps do not occur at regular intervals, and when the npd
for £ is continuous, discrete, or has some arbitrary shape. The step-length ¢ has to be chosen
at random for any time interval ¢, such that the probability of finding & from & to & + d¢ is
p(&, t) dé. This yields a set of independent, random variables (Gaussian), for which the vari-
ance is

(& = f ©p(e, 1) de = 2Dt (16.69)
By letting ¢ become &/(2Dt)'/?, a normalized Gaussian random process is obtained. In the

normalized process, ¢ has a zero average with a variance (¢2) = 1. An example of a Gaussian
random walk is shown in figure 16.17.

Scaling Properties of Random Walks in One Dimension

Consider sitting on a chair in a sunny room, observing floating dust particles. As sunlight
reflects off each particle, the particle is clearly seen against shadows within the room or
against a dark background. By focusing on only one of the dust particles, it appears to float
effortlessly in a constant motion. As a result, we cannot clearly and finitely resolve the posi-
tion of the particle; we can see it only at intervals bz, where b represents the first, third, or some
other time step. Suppose we see the second time step of a particle’s position; any increment &
of the particle position is now a sum of the two steps (i.e.,&; and &,). Regardless of the number
of b collision (or microscopic) time steps, the change in particle position is an independent
Gaussian process with (£) = 0 and a variance of (¢2) = 2Dt, where t = br.

Because Brownian motion is self-affine, transformation of the normal probability dis-
tribution is accomplished by replacing 7 = b7 and ¢ = b'/%¢; thus, the length scale is changed
by a factor of b/? and the time scale by a factor of b, which yields a scaling relation of

plE=VbE T=b1) = —Vbp(& 1) (16.70)

[N)
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Figure 16.17 A Gaussian ran-
dom walk (data from Feder 1989)
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Hence, the scaled property appears the same, as if not scaled. Consequently, we effectively
scaled and changed the resolution, and the Brownian record looks the same (i.e., it is scale
invariant). Also, b~1/? ensures that the normal probability distribution is appropriately
normalized.

Fractional Brownian Motion: Mathematical Models

Fractional Brownian motion, fBm, has become one of the most useful mathematical models
for generating random fractals like those found in nature. This includes self-similar fractal
landscapes, clouds, and mountainous terrain. Figure 16.18 shows fBm traces, usually denoted
Vyt, plotted as a single-valued function consisting of only one variable ¢ (time). The traces
shown in figure 16.18 represent the point of location or differences of fBm between succes-
sive intervals. As we suspect, the scaling behavior of each trace is characterized by the Hurst
exponent H, with a range 0 < H < 1. The closer H approaches to 1, the smoother the trace,
and as H gets closer to 0, the rougher the trace. H relates any change in quantity V
(AV = V(1) — V(t)), to a difference in time (A¢ = 1, — 1,) by the scaling law AV o At The
sum of independent steps for random walks leads to a variation that scales as the square root
of the sum of steps; in this instance H = 1/2 corresponds to a trace of fBm. The Gaussian dis-
tribution of fBm has a variance

(| V() - V() |? « |, — gl 2H (16.71)

where (and ) are grouping averages consisting of many samples of Vy(t) and H has the value
0 < H < 1. The mean-square steps depend only on At; each 7 is statistically equivalent. It is
important to note that fBm is not differentiable, even though V,,(¢) is continuous. Constructs
(based on averages V(1)) are developed to give meaning to a derivative of fBm. The deriva-
tive of normal Brownian motion is H = 1/2 and for H > 1/2 there is a positive correlation
for increments of V,(¢) and its derivative fractional-Gaussian noise, while for H < 1/2, there
is a negative correlation.

A statistical scaling behavior for V,,(¢) is shown when the time scale ¢ is altered by a fac-
tor 7, such that the steps AV, are altered by a factor 7¥. This scaling behavior is given by

AV (1)) o« AV, (1)%) (16.72)

Here, the 7 coordinate has a special status. While each ¢ corresponds to only one value of V,
any specific value for V can occur at multiple £’s. This nonuniform scaling is termed self-affine.

Global Dimension of Self-Affine Fractals

The global dimension of self-affine fractals is D = 1, and is equal to the fractals’ topological
dimension; the local dimension is fractal and D = 1/H. The local dimension is often termed

Figure 16.18 A trace of fractional Brownian
motion (fBm); the point of location or
differences of fBm between successive
intervals (data from Peitgen and Saupe 1988)
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the “latent fractal” dimension because it is related to the fractal dimension associated with
the trail of a specific Brownian particle. When D = 1, the fractal trace resembles a straight
line; this infers that there is no vertical amplitude. The amplitude of the trace is also known
as the “cross-over” scale, and it characterizes the overall roughness of the fractal surface.
Thus, we can obtain two profiles with a similar fractal dimension, but totally different surface
roughness. An example of this is the similar fractal dimensions of a concrete runway and
mountainous terrain (Sayles and Thomas 1978), however, the cross-over scales for each of
these is completely different. As a result of these parameters, two observations are made.
First, there is a ratio of the vertical range (R) over the horizontal range L. The ratio can be
written as R(L)/L = wf — 1, where w is a window length (size) in which measurements are
taken and H is the Hurst exponent. As the length L of the trace becomes much larger than
the cross-over scale, any irregularity within the trace is minimal or if H < 1, the ratio ap-
proaches zero as L approaches infinity. Second, the self-affine record has a global value of the
fractal dimension D = 1—that is, globally, a self-affine record is not fractal. As a result, it is
important to measure the local dimension.

Measurement of Self-Affine Fractals

In discussing the global dimension of self-affine fractals, we have indicated that the ratio be-
tween the vertical and horizontal ranges is scale dependent (i.e., each varies with changes in
scale). Also of note, the techniques used to measure self-similar fractals are inappropriate for
self-affine fractals. For example, if the length of the ruler used to measure a self-affine fractal
exceeds the cross-over scale discussed earlier, that measured length normally remains con-
stant and the resulting dimension is always D = 1.Thus, since we want to measure the local
dimension and not the global dimension, this is inadequate. Additionally, if we have a large
scale in comparison to the cross-over scale, D is also one. In contrast to using boxes, grids, or
rulers, as with self-similar fractals, we have to measure the change in vertical range (rough-
ness) over different horizontal scales that yield an estimate of H (Hurst exponent). If the
Hurst exponent is obtained, it can be converted to a fractal dimension, as proven earlier. To
obtain this measurement, we need a variety of length scales that vary on an order of magni-
tude and a few hundred samples.

Roughness/length This method of measurement is used when there is no constant
sampling interval. However, we assume that each sampling interval (window) has about 5-10
samples. Instead of using the vertical range, we calculate the standard deviation of roughness
data for windows of size w; this is related to the Hurst exponent by o(w) ~ w”. The entire
length is measured by a series of windows and for each window, the roughness is determined
after subtracting any local linear trends. As a final estimate, the average roughness for each
window (o(w)) is determined. For a number (series) of window lengths, plot log;, (o(w)) ver-
sus log;, w. For a self-affine trace this plot is a straight line. The slope of this line is the Hurst
exponent and is determined by dividing the horizontal range by the vertical range—that is,
H = log (x)/log (y). Once H is calculated, the fractal dimension D for a self-affine trace is
given by D = 2 — H, and for a surface is given by D = 3 — H.

Rescaled range (R/S) To use this method, the data measured must have a constant
sampling interval. This is because the expected difference between successive values of
y; - - - ¥, is a function of the distance between each y value. We already have the equation for
R/S from the beginning of this section, so it is not repeated here. Suffice it to say that R rep-
resents the range of values extracted over the y interval that is measured as a line segment,
connecting the first point to the last point within a window (i.e., with respect to a trend within
the window); S is simply the standard deviation. In this method, R is the average of a number
of values. As with the roughness/length method, if the trace is self-affine, the plot follows a
straight line. The slope of this line is the Hurst exponent H. Also, the fractal dimension D for
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both a trace and a surface are the same as for the roughness/length method, except that the
R/S method has to be employed to obtain D. Thus, we write D, /5"

Variograms This measuring method can also be applied to a series that does not have
a constant sampling interval, provided that points are selected such that At is a small per-
centage of 7. By squaring the difference between two y values in a trace, separated by the in-
terval 7, we have a variogram, which is related to the autocovariance function (Journel and
Huijbregts 1978). This is written as

W) =5 3 (el + o) = 257 (16.73)

where y(h) is the dissimilarity in the two values (squared difference), z(x) is the regionalized
variable at points y and 8, and N is number of points sampled. Dividing equation 16.73 by 2
(commonly seen in the literature) yields a semi-variogram. Previously, we listed the standard
deviation in relation to fractional Brownian motion as o(7) = 7'%; if we now consider a nor-
mal distribution with a squared difference, we can write V(r) =~ 72, To obtain H, the log,,
V(7) is plotted versus the log;, 7. Again, the slope has to be a straight line if the fractal is
self-affine and represents 2 H because of squaring. Thus, for true H, divide the slope by two.
The fractal dimension D, for this method for a trace and a surface is the same as the previ-
ous. Through measurement, an average trend appears that has to be subtracted before esti-
mating range or roughness. The variogram accurately measures the average squared value of
the trend. It should be noted that the average trend needs to be subtracted before range or
roughness is estimated, to prevent error from creeping into the calculations.

Power-spectral density As a function decomposes into a sine or cosine (harmonic)
function, it is termed the “power-spectral density,” PSD: the PSD is the squared amplitude of a
harmonic function. To obtain the fractal dimension, the power spectrum P(k) must be deter-
mined; log, P(k) is then plotted versus log,, k. The harmonic function is expressed as wave-
length A, frequency f, or wavenumber k. Both the frequency and wavenumber is 1/x, where x is
either selected as time or length. The relation between all three is k = 27f = 1/2mA. As a con-
sequence, the power spectrum for self-affine fractals follows a power law (scale-invariant); the
exponent is equal to —f. As with the other methods already discussed, if the trace is self-affine,
the plot follows a straight line with a negative —8.The reader should recall that for a self-affine
trace, D = 2 — H. Also, the method can be extended to two-dimensional surfaces, by a mea-
sure of V(w) as the average squared distance between points. The points are separated by some
distance w in all directions. Thus, the appropriate fractal dimension of the surface could be ex-
pressedas D = 3 — H.

The scale-invariant form of power spectrum of a self-affine trace and surface can be
shown with Parseval’s theorem, relating the spectral density P(k) of a function y(x) to its
variance 0%

f Y dx = o? = f P(k) dk = 2 f P(k) dk (16.74)

where y(x) has zero mean and P(k) is an always-positive function symmetric about zero.

Parseval’s theorem illustrates that the power spectral density P(k) quantifies how the total

variance in a function is partitioned in components of varying wave number, k. Because the

variance of a self-affine function depends on the length of the window w, and the length scale
is proportional to wavelength A, the inverse of equation 16.74 is expressed as
d 2 a 2H d 2H d —-2H —-2H -(2H+1)

(k) i’ (w) P dk)\ dkk k k (16.75)

The power-spectral density for a self-affine trace, as seen in equation 16.75, takes the form of
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a power law with an exponent equal to —f. Using equation 16.75, B is related to the fractal
dimension D to obtain

D= (16.76)

Since we are discussing a self-affine surface, P(k) is a function of wave numbers in k, and k,
respectively. For two-dimensional surfaces, P(k) is a function of wave numbers in both the x
and y direction; however, by defining k as independent of direction, P(k) is a function of only

one variable. This is defined by
k =V + k? (16.77)

In this instance, the fractal dimension D = (8 — )/2.This method is the most difficult of all
that we have discussed for obtaining the fractal dimension, although there are some who be-
lieve it the most cited in the literature. One reason for this: using the expression for k—taken
as a squared-Fourier transform of a finite series—is a poor estimate of P(k). This squared
transform is termed a “periodogram,” whose estimate of power at various frequencies is very
noisy, the amplitude of the noise proportional to the function’s spectral power. If the ampli-
tude is filtered to make it more like the amplitude of “white noise” (for typical Brownian in-
crements H = 1/2; the noise in this case is an independent Gaussian process normally called
white noise), a more reliable estimate of the fractal dimension is obtained. In summary, we
have presented four methods for measuring self-affine fractals: (1) roughness/length, for use
when there is no constant sampling interval; (2) rescaled range, to be used when data mea-
sured have a constant sampling interval; (3) variograms, a method to be applied to a series
that does not have a constant sampling interval; and (4) power-spectral density, a statistical
tool commonly used to study the frequency content of signals. The first two methods are the
easiest to use; however, before attempting the latter two, the reader should consult current
literature on the subject. Because there is so much literature, we have conducted only a brief
discussion here, and the reader is referred to the References section at the back of the book
for a more complete list of articles on the subject.

Hyperbolic distribution The pdf for a random variable written in terms of a hyper-
bolic distribution (also called a power law) is expressed as p(x) = bCx~®*D, where b is some
power and C is a constant. This expression is only true for x > 0 and b > 0.The modeling of
random variables using a hyperbolic distribution is only useful for positive random variables,
and is most effective where the number of smaller members (within the group being sam-
pled) is greater than the number of larger members. Here, b characterizes the hyperbolic
distribution since C is only a constant and not very important, except that it depends on the
minimum value of x chosen. Essentially, the hyperbolic distribution has all the characteristics
of scale invariance. In such cases, the exponent b is invariant under multiplication. Unlike the
previously discussed distributions, there is no scale length associated with hyperbolic distrib-
utions. Thus, hyperbolic distributions are scale invariant and any process that creates a vari-
able in this manner must also be scale invariant.

16.7 VISCOUS FINGERING AND DIFFUSION-LIMITED AGGREGATION

Multifractals (Feder 1988) are shapes and measures that require more than one dimension,
and have received broad attention in the study of such dynamical systems as Poincare maps
and electric-field strength in aggregation problems. Consequently, the measurement of mul-
tifractals is related to the study and distribution of physical and other quantities on the sur-
face of a sphere or an ordinary plane. Additionally, the support itself can be a fractal. Fractals
provide a general language for the classification of various pathological or indescribable
shapes (“animals”) encountered in the natural sciences. The various ways in which matter
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condenses on the microscopic scale seem to generate fractals; this is an example of percola-
tion, often confused with diffusion (Feder 1988; Peitgen and Saupe 1988). An example of dif-
fusion is the random motion of dye particles mixed in a solution. In contrast, percolation is
displayed when the randomness is attached to the medium itself. For example, consider water
beading on the hood of an automobile. Initially it is several atomic layers thick but rather
than a uniform coverage, the water beads, due to surface tension. Analysis of the connected
clusters (droplets) shows irregular branching structures of finite size. As the amount of water
increases, the clusters increase in size, and eventually connect across a certain sample length.
The unique characteristic associated with percolation is that of a percolation threshold, DLt
the rate of buildup is below p,, then the spreading of fluid is confined to a usually small, finite
area. Assuming that a point source is constant and that water is then applied, is the resulting
contaminant going to be contained locally within a droplet, or is it going to spread across the
hood and connect to other beading droplets, causing a large puddle that can connect to other
large puddles? The transport of immiscible fluids (e.g., oil and water) is also a good example
that can create fingering, invasion percolation, or preferential flow.

Diffusion-Limited Aggregation (DLA)

DLA is a simple model that reproduces many natural shapes, such as electrochemical depo-
sition, electrostatic discharge and—for purposes considered here—fluid—fluid displacement.
It is easily implemented on a computer, with resulting structures resembling those of root
distributions within a soil profile. The DLA process is one in which a particle or monomer
diffuse in the “random walk” process (see section 16.6). Imagine a solution of randomly mo-
bile particles; DLA begins with a single fixed, sticky particle at an origin point within this so-
lution. Each of the mobile particles moves on its own random path, one random unit at each
time step. At some point, a random particle finds itself next to the origin point and “sticks” to
it. This point (beginning from one site) slowly grows into a cluster with the addition of other
random particles, to complete the random-walk process. A structure much like that of the
distribution of roots within a medium forms with many branches (see figure 16.19). The open
branches do not fill, because a particle trying to reach the innermost point of the branch
invariably contacts one of the sticky sides first. The cluster thus formed is an example of a

Figure 16.19 A schematic of diffusion-limited
aggregation (DLA). The formed clusters are

termed “percolation transition,” and are normally
fractal in nature (data from Feder 1989)
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“percolation transition,” and is usually fractal in nature. The cluster is both porous and ran-
dom but also, the cluster has to exhibit decreasing density upon increase in size described by

g =R (16.78)

where p is the cluster density, 7 is cluster radius, R, is particle radius (particles forming cluster
and thus, the characteristic length scale), D is the fractal dimension, and E is the Euclidean
embedding dimension (i.e., D < E). For a fractal cluster, the density decreases with distance
from the point of origin.

Fractal Diffusion Fronts

If we apply methylene blue dye to the top of a sandy soil and add water very slowly in small
amounts, a diffusion front begins to appear. Upon close examination, the front appears like
the edge of a coastline due to adsorption of the dye to the sand particles. This is another ex-
ample of percolation. The structure of the diffusion front is fractal and is related to the hull
of percolation clusters (Sapoval, Rosso, and Gouyet 1985), but the diffusion process is not
fractal. The surface of the diffusion front is called the hull and is a finite fraction of the ad-
sorption sites involved with a fractal dimension. As the particles of dye move from the
source, diffusion D is described by the Einstein relation given in equation 16.68 (the particle
moves to a neighboring site a distance a, and time step 7). This means that the displacement
of a diffusing particle in the x (perpendicular) and y (parallel) directions away from the
source are independent of each other.

The position of the hull is given by p(x,) = p,. Also, if the diffusion has a width of 2L
instead of L (L is a length over which data is measured), the number of occupied sites
belonging to the hull is also doubled, which makes a view of the hull one-dimensional. The
hull is a self-similar fractal up to length scales that equal the hull’s width. The fractal dimen-
sion of the hull can be written as

e ]

D =175 (16.79)
where v = 4/3 (controls the divergence of the correlation length ¢ at p,). This was proposed
by Sapoval, Rosso, and Gouyet (1985) and proved to be correct by Saleur and Duplantier
(1987). This is because the ratio M,(L/€)o,/ L€ approaches 0.441 as £ approaches infinity,
where M, is the number of sites that belong to the hull, L is the length, and ¢ is the diffusion
distance defined as the root mean-square displacement of the diffusing particle from its start-
ing point.

At any time step, the particles at the diffusing front occupy sites similar to the percola-
tion process. The probability p(x) of the site being occupied is dependent on distance from
the source, and is mathematically described by

e 2 o 2
pE =152 fo du exp (— 1) (16.80)

where u is an element of the set. At the source, p(x) = 1 however, it rapidly diminishes for
x > 1.The internal structure of the diffusing front is also fractal. This fractal structure extends
over distances proportional to the diffusion width € = 4Dt%°. As we might suspect, this dis-
tance diverges with time, which allows the fractal structure to extend over macroscopic dis-
tances, even in instances where diffusion is on the molecular scale.

Viscous Fingering in Soil

The principles of viscous flow in soil are exactly similar to the principles which control flow
in viscous-flow analogs such as the Hele-Shaw or parallel-plate analogs. Both are well-



Section 16.7  Viscous Fingering and Diffusion-Limited Aggregation 557

known devices used for two-dimensional ground-water investigations. The viscous-flow ana-
log is based on the similarity of differential equations that govern flow of a viscous fluid in
the narrow space between two parallel plates and those that govern saturated flow in soil.
This methodology has been used in investigations of seepage through earthen dams, artificial
recharge, drainage, oil production in reservoirs, and in other investigations. The Navier—
Stokes equation for a viscous incompressible fluid is given as

L N 1ap

=f - == -V, 16.81
R (16.81)

where DV, /Dt represents the hydrodynamic derivative, V, is the velocity component in the
x direction, v is the kinematic viscosity, p is the fluid density, f, is the component of external
force per unit mass acting on the liquid, and p is the pressure. Because the fluid flows through
a narrow vertical space of width b, V, = 0. For fluids that have very high viscosities or very
slow (creeping) motions, viscous forces are much greater than inertial forces. Thus, assuming
this type of flow takes place between the parallel plates, the left-hand side of equation 16.81
(the inertial term) can be neglected. Consequently, the only active-body force is gravity with
potential gz. Thus, f, = —d(gz)/dx = 0;force in the y direction is the same, we simply substi-
tute the x component with the y component—however, f, = —d(gz)/dz = —g. Since b is
narrow but also because the fluid adheres to the parallel plates, velocity gradients in the y di-
rection are considerably larger than those in the x or z directions. As a result, we can neglect
IV, /ox, 8%V, /ox*, 8V, /ox, 6°V,/ox? when compared with oV, /dy, 92V, /3y, aVv,/dy,a°V,/ay~
Thus, equation 16.81 becomes
2
W A pe)is . @ L (16.82)
ox ay

The parameter (p + dgz) remains constant in the y direction and thus is equal to zero. Re-
arranging equation 16.82 for velocity we obtain

k
W~ —;"V(p + pgz) (16.83)
where k is the permeability of the medium and 7 is the dynamic viscosity of the fluid. The term
k/m is referred to as the mobility—thus, the velocity V = —M(p + dgz). For a horizontal posi-
tion of the parallel plates,k = b*/12 (only for the Hele-Shaw cell; for soil, k is the actual mea-
sured permeability). In terms of the Laplace equation, equation 16.83 can be written as

V-V=-MV¥p+pgz) =0 (16.84)

where M is «/7. This equation is characteristic of many diffusion problems that represent po-
tential flows. Normally, these types of analogs are isotropic and in order to find a solution to
the equations, the proper boundary conditions have to be specified.

Upon analyzing the displacement of epoxy by air, Feder (1989) finds that there is a
relation between the number of air monomers (N) present in fingers within soil, and
the distance of the monomer (r;) from the point of injection. The relation he develops
involves the radius of gyration (R,) and total number of monomers containing air (N,),
such that R, = (N, 'Z, r?)*’. The results of Feder’s investigation reveal that there is indeed a
number-radius relation, with the resulting data from different fluid types and different times
all falling on a simple curve. The number-radius relation is expressed as

N = N0<RLg>Df<Er§) (16.85)
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where fis a crossover function that is assumed constant at x < 1, and approaches x~? for
x > 1. As aresult, N(r) —» N, for r >> Rg. Using this method, the results are best fitted with
a fractal dimension D, which represents the fingering of the fluid within the media.

There are differences between the results obtained with a Hele-Shaw analog and those
observed by viscous fingering. Since the Hele-Shaw has only a small width b (length scale),
the fluid flow is controlled by this microscopic length. However, for a soil with a pore diame-
ter equal to b, fluid flow is controlled in all directions by the microscopic length scale. Also,
the boundary conditions chosen for each method have a significant influence on the results
obtained. For the Hele—Shaw cell, the length plane is set by capillary forces, whereas in a soil
the length scale is set by pore diameter. Thus, we can easily ascertain that for the Hele-Shaw
analog flow, control is simply a matter of pressure distribution. For a soil, fluid flow or dis-
placement is not simply a pressure difference, but the pressure relative to the capillary pres-
sure at the pore neck. This is basically the same relation as that of the “inkbottle” effect (dis-
cussed earlier in the text), where it is more difficult for a fluid to enter a narrow neck versus
a wide neck. Because soils are heterogeneous, pore necks vary in both size and shape
throughout the system, which introduces a degree of randomness; without this randomness,
a fractal structure cannot be produced. In both the Hele-Shaw analog and soil, flow of high
viscosity fluids is controlled by the Laplace equation, thus fingering in soil has the compo-
nents of the Laplace equation as it relates to Darcy’s law and pore geometry. The combina-
tion of the two components causes the generation of a fractal structure that can be analyzed
by the method described by Feder (1989).

Earlier we discussed how the DLA process is one of random walking, where each parti-
cle eventually comes to rest and causes the formation of a fractal structure. We assume that the
particles diffuse at a constant rate as described by the Einstein relation (equation 16.68). Using
this concept, the random walk can be described by the basic diffusion equation

aC(r, t)

=) (16.86)

where C(r, ) is the concentration of random walkers. By assuming steady state, dC/dt = 0
and equation 16.86 reduces to the Laplace equation. The velocity, as described by Witten and
Sander (1983) is given by

V., =—-Dn-VC|, (16.87)

where V is perpendicular to the surface 1, with surface normal n, and the equation is evalu-
ated at the surface, | .

It is well known that if the displacing fluid has a lower viscosity than the resident fluid,
wetting-front instability ensues and fingering will occur. For this case, the front moves with
velocity MV(p + pgz).When the displacing fluid has a higher viscosity, the moving front is sta-
ble with a fractal dimension of 1. Also, the capillary number of a fluid greatly influences its abil-
ity to form fractal structures. The capillary number (Ca) is defined as

Ca = iy (16.88)

g

where V is the velocity, n the dynamic viscosity, and o is the interfacial tension. The Ca is a
measure of the ratio of capillary to viscous forces. From equation 16.88, it can be seen that Ca
is increased by velocity (within a practical limit) or the use of fluids with a small interfacial
tension. Thus, with high Ca, DLA accurately describes fingering in two-dimensional soil (i.e.,
Ca = 0.05 to about 0.1). For low Ca (Ca = 10™*), the fractal structures formed are charac-
teristic of those found using invasion percolation. This means, essentially, that the capillary
forces completely dominate the viscous forces due to low velocity, and perhaps high viscos-
ity. In invasion percolation (where Ca drastically decreases), pressure drops in the displacing,
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resident fluids are neglected, and a simple pressure difference between the two fluids is

calculated. This is accomplished by subtracting the pressure of the resident fluid (p,) from the

pressure of the displacing fluid (p,) as follows

_ 20cos ¢
r

where o is the interfacial tension between the two fluids, ¢ is the liquid-contact angle be-
tween the pore wall and the interface, and r is the pore radius. We note the similarity between
equation 16.89 and the height of capillary rise. Perhaps the most prominent example of inva-
sion percolation is the displacement of oil by water—two immiscible fluids.

SUMMARY

We have determined that fractals can provide meaningful answers to some of the questions
now confronting water sciences, because they extend the principles and concepts used in geo-
statistics and scaling. This short discussion was meant to spark the interest of the reader.
There are many possibilities to be explored for the use of fractals in the environmental sci-
ences. However, the use of fractal mathematics in the earth sciences is still in its infancy.

ANSWERS TO QUESTIONS

16.1. A normal probability distribution is the result of additive effects of numerous small, random, in-
dependent sources of variability. Thus, the properties for which we expect normal distribution
are bulk density, water content at saturation, water content at —100 kPa, and the particle-size
analysis.

16.2. A log-normal distribution is the result of multiplicative effects due to spatial variability, thus the
physical properties we expect to be log-normally distributed are scaling coefficient; saturated
and unsaturated conductivity; diffusion coefficient; electrical conductivity; and pore-water ve-
locity. However, in specific cases, the given property may not conform to the distribution given
here. The answer, as to what makes a log-normal distribution more appropriate than a normal
distribution for certain properties, is left to the student; please consult any standard statistics
text.

16.3. (a) Sampling error is a difference between a sample’s average (resulting from the sampling
process), and the population average (due to the heterogeneity of the property being studied).
Measurement error is the difference between repeated results of a measuring process applied to
a constant uniform object or property. (b) Statistical true value is the limiting mean of n mea-
surements (that can be inaccurate due to bias) as n becomes large. Scientific true value is the
actual value of an object of measurement by definition of the object. (¢) scientific bias is a char-
acteristic difference between the statistical true value and the scientific true value due to inade-
quate specification of the measurement process. Measurement bias is a characteristic tendency
of results being either too high or too low, due to deficiencies in sampling apparatus or sampling
materials. Sampling bias is the tendency of results to be in error due to inadequate sampling pro-
cedures or deficiencies in the sampling process.

16.4. This could be done when the lower-precision method is less biased than the higher-precision
method, and also when the lower-precision method is more efficient than the higher-precision
method.

ADDITIONAL QUESTIONS

16.5. Prove or show that the ruler dimension equals the similarity dimension in a triadic von Koch
curve.
16.6. What are the three basic characteristics of fractals?
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16.7. How is the precision of an estimate of a derived value related to the precision of its component
measurements?

16.8. What information is carried by the standard error? The coefficient of variation? When would
the use of each be appropriate?

16.9. What information is displayed by a correlogram? A variogram?

16.10. Scaling is normally done on a computer; consequently, the method the computer uses to obtain
areduced SS is often misunderstood. Two intact soil cores are extracted and the following water
retention data is obtained.

Core Sampling Data

Core h (cm) S
1 10 0.95
1 20 0.90
2 10 0.94
2 20 0.93

Using the data from the table: (a) estimate the reference curve #,,(s) by multiple-linear regres-
sion from SAS or similar statistical analysis; and (b) find coefficients a of the equation that best
fit the data. This is accomplished by bringing to one side (set = 0)—that is, residual sums of
squares—such that

log (h,) —ay—a;S...=0

which is the ideal SS. (Hint: see section 16.2 and note equations 16.50-16.52.)



