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1.     FLOW CONSERVATION LAWS 
 
1.1  Conservation of mass and momentum 
 
In order to discuss modeling approaches and the approximations that lead to 
the formulations discussed in more detail below, the basic equations 
governing fluid flow and sediment motion are developed in this and the 
following section respectively. These equations are the fundamental building 
blocks of all the flow models, but various models use versions of the full 
equations that are reduced by neglecting certain terms, or even more 
commonly, by integrating over one or more dimensions to develop averaged 
equations. The most important thing to note in going through this exercise is 
the approximations that are required in order to develop certain methods; 
these will be explicitly noted in the text as will the physical meaning of the 
approximations. The first approximation to be used here is that, for all 
development, the flow will be assumed to be incompressible. This is a good 
assumption as long as the flow velocities are much less than the speed of 
sound, a condition that is well satisfied in channel flows. Using this 
assumption, conservation of mass and momentum for the flow are given by 
the following: 
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where ur  is the vector velocity, ρ  is the fluid density, P is pressure, and 
n is the fluid kinematic viscosity. These equations describe fluid motion in 
general; the only assumption made in deriving them is that the fluid is 
incompressible. In general, solving these equations in this full form in natural 
flows is difficult and impractical (although improvements in computational 
speed and algorithms are making direct solution of these equations 
progressively more attainable). Usually, the equations that are actually used to 
compute flow solutions are reduced forms of the above equations developed 
through temporal or spatial averaging, or by scaling the equations to discover 
which terms are most important and retaining only those terms in the 
numerical solution.  

The primary reason that these equations are difficult to solve for most 
natural flows is the occurrence of turbulence. With the exception of flows 
characterized by appropriate combinations of low velocity, small scale, and/or 
high fluid viscosity (characterized by the Reynolds number, see Tennekes and 
Lumley, p. 1-26) flows are unstable to perturbations, and are characterized by 
three-dimensional variability across a wide range of time and length scales. 
For example, even if one creates a simple channel flow with a smooth bottom, 
simple rectilinear channel shape, and steady discharge, the velocity at any 
point in the flow will vary in time for typical length and time scales. In 
addition to adding substantially to the complexity of the flow, these variations 
in flow give rise to important momentum fluxes, changing even the time-
averaged character of the flow significantly. To avoid the necessity of 
computing the variations in flow associated with turbulence, by far the 
majority of computational flow models used for natural flows use the so-
called Reynolds’ equations. These equations are developed by splitting the 
vector velocity into a time mean part (or an ensemble-averaged part) and a 
time-varying part (or the variation about the ensemble average). For a detailed 
description of this procedure and the reasoning behind it, the reader is referred 
to Tennekes and Lumley (p.28-33), or any other beginning text on turbulence. 
In a cartesian coordinate system, the Reynolds’ momentum equations for the 
x, y, and z directions are given by: 
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where u, v, and w are the velocity components in the x, y, and z directions, and 
where overbars present time (or ensemble) averages and primes represent 
deviations from that average (e.g., 'u u u= + ). Strictly speaking,  the process 
of time averaging would result in each of the first terms in the momentum 
equations being identically zero, but in practice, the time required to compute 
the average of a turbulent quantity is often less that the time scale associated 
with externally imposed unsteadiness. For example, in a channel flow with 
slowly varying discharge, it may be possible to construct a time average over 
the turbulence using an averaging time much, much smaller than the time over 
which discharge variations occur. For ensemble averages, where one averages 
over many realizations of the same flow, the inclusion of the unsteady term in 
the equations is not problematic. For example, if one makes measurements of 
velocity in a turbulent wave boundary layer, it is possible to average over 
many waves to determine the ensemble averaged behavior of the flow; the 
departure from that average over a specific wave or time series of  waves 
yields the turbulent variability. The last three terms on the right-hand side of 
the above equations arise as a result of the momentum fluxes due to turbulent 
fluctuations. These terms are very important for transferring momentum 
within the flow, especially near boundaries or anywhere strong shears occur in 
the flow. 

Proceeding with the same averaging procedure on the conservation of 
mass equation yields: 
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The original four equations expressing conservation of mass and momentum 
had four unknowns: the three components of velocity and the pressure. The 
number of unknowns matched the number of equations, so this was a well-
posed problem. However, there are also four Reynolds’ averaged mass and 
momentum equations, but there are more than four unknowns because of the 
appearance of the momentum fluxes associated with the turbulent fluctuations. 
This is the so-called closure problem of turbulence. 
 
1.2  Reynolds stresses and turbulence closures 
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The quantities involving time or ensemble averages of products of time 
varying quantities shown in equations (3) through (5) are referred to as 
Reynolds’ stresses. Although they are called stresses, it is important to 
remember that these terms arise due to advective transport of momentum. 
However, because they appear in the Reynolds’ averaged momentum 
equations in a manner analogous to viscous stresses, they are referred to as 
stresses, and are often parameterized in terms of the mean flow using concepts 
developed for viscous stresses. Rewriting equations (3), (4) and (5) in terms of 
the components of the Reynolds stress tensor yields the following: 
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where the Reynolds’ stresses are defined as follows: 
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Generally, the Reynolds’ stresses are much greater than viscous stresses in 
natural channel flows, and the viscous stresses are neglected in the momentum 
equations. Thus, the terms in the above equations involving ν , the kinematic 
viscosity, are negligibly small are omitted from the equations. 

In order to solve the above equations, one must either rewrite the 
Reynolds’ stresses in terms of the mean flow quantities or provide some other 
manner by which these terms may be evaluated using additional relations. The 
most common method in simulating natural flows is to relate the Reynolds 
stresses to the mean flow quantities by analogy with the relation between 
viscous stress and the rate of strain tensor. This leads to the concept of eddy 
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viscosity, which assumes a proportionality between the Reynolds’ stresses and 
the components of the rate of strain. While there is good justification for this 
kind of approach in situations where the flow is dominated by one length and 
velocity scale, as in a simple boundary layer, the concept is generally only a 
crude approximation for real, complex flows in nature. Nevertheless, many 
approaches are based on this concept, and there are a number of ways of 
estimating the spatial structure and values for eddy viscosity using simple 
dimensional arguments or more complex reasoning. For example, k ε−  
models use the eddy viscosity concept, but evaluate the local eddy viscosity 
using advection-diffusion equations for the turbulent kinetic energy and the 
length scale of the turbulence; this allows treatment of situations where the 
local flow parameters are not accurate predictors of local turbulence structure. 
There are also a variety of closure approaches that are not predicated on the 
existence of an eddy viscosity. For example, it is possible to manipulate the 
momentum equations to develop equations for each of the Reynolds’ stresses, 
however, these equations introduce more unknowns that must in turn be 
parameterized or estimated. A more complete discussion of turbulence closure 
techniques is beyond the scope of this chapter, but the reader is referred to the 
review by Rodi (1993) for an excellent discussion in simple terms.  

If the existence of a scalar, isotropic eddy viscosity, K, is assumed, the 
Reynolds’ stress terms in equations (7), (8) and (9) may be replaced by the 
following relations:  
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Substituting the above relations, equations (7), (8), and (9) once again 

become a closed set of equations, with unknowns consisting of the Reynolds’ 
averaged velocities and pressure. However, in order to solve these equations, 
an eddy viscosity still needs to be determined. As noted above, there are many 
ways to do this, but one of the most common is based on extending the well-
posed relations for simple steady, uniform boundary layers to more complex 
flows in channels. This extension is based on the observation that flows in 



 
6  Two-Dimensional Model Notes 

unstratified channels are dominantly boundary-layer-like in character. In 
simple boundary layers, the local turbulence is well-described by the local 
boundary shear stress and distance from the boundary. Indeed, this result 
stems directly from simple dimensional analysis (e.g., Tennekes and Lumley, 
1972). This result is complicated slightly when one considers the effect of 
finite depth, but not by much. Defining the shear velocity in terms of the local 
boundary shear stress and the fluid density as follows: 
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dimensional analysis yields the result that the eddy viscosity, K, can be 
written in the following form:  
 
                                                *K ( )ku hκ ξ=                                           (13) 
 
where k is an empirical constant of proportionality called von Karman’s 
constant ( ≈ 0.407, see Long et al., 1993) and ( )κ ξ  is a shape function giving 
the vertical distribution of K between the bed and the water surface, using the 
definition /z hξ = , and where h is the local flow depth and z is distance from 
the boundary. For the choice of a parabolic distribution of eddy viscosity, as 
given by 
                                                     ( ) (1 )κ ξ ξ ξ= −                                    (14) 
 
the velocity profile in the boundary layer will be logarithmic, as follows: 
 

                                                       *

0

lnu zu
k z

=                                       (15) 

where 0z , the so-called roughness length, is a constant of integration that 
depends on the boundary shear stress, the fluid viscosity, and/or the size of the 
roughness elements on the bed (see Southard and Middleton, 1986, or any 
beginning text on wall-bounded shear flows for a discussion of roughness 
lengths). In practice, experimental evidence suggests that equation (14) is not 
the best choice, although it may be quite accurate close to the boundary. 
While there are several other possibilities suggested in the literature, there is 
not much evidence to suggest that more complicated structure functions are 
verifiably better than simply using equation (14) from the bed up to one fifth 
of the flow depth, and using a constant value above that level, i.e. 
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This choice for κ yields a logarithmic velocity profile near the bed, and a 
parabolic one well away from the bed.  

In applying models that use the simple eddy viscosity closure described 
above, it is absolutely critical to note that this form of the eddy viscosity can 
only be strictly correct in a steady, uniform boundary layer. While natural 
rivers and streams are predominantly boundary layer-like in nature, they often 
contain components of both free shear layers and wakes. One immediate 
shortcoming of the model above is that is predicts zero flux of momentum due 
to turbulence in regions where the boundary shear stress is zero. In a simple 
shear layer bounding a separation zone in a river, this suggests that, as the 
boundary shear stress must change sign somewhere in the region of between 
upstream and downstream flow, there must be a surface across which no 
momentum is transferred by turbulence. Obviously, this is wrong; if these 
effects are important, a different closure must be employed. Nevertheless, 
these simple closures perform adequately in a wide variety of natural flows. 
The most important point here is that, when using a closure of a certain type, 
one must keep in mind the potential errors in that closure, and always bear in 
mind what physical processes are likely to be well treated and what processes 
are likely to be poorly treated. Understanding the detailed implications of the 
assumptions that go into building any flow model is critical for deciding how 
appropriate that model may be for a given physical situation. 

 
 
1.3  Hydrostatic assumption 

 
Up to this point, each of the three components of velocity have been 

treated equally and the terms in the momentum equations for u, v, and w have 
been treated in the same manner. However, in many flows of interest, both 
vertical velocities and vertical accelerations are low, and the vertical equation 
of motion (5 or 9) can be accurately approximated by the retaining only the 
pressure gradient and stress terms: 
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This assumption is referred to as the hydrostatic assumption, as it results in the 
pressure being distributed hydrostatically in the vertical, meaning that the 
pressure is equivalent to the overlying weight of fluid per unit area at any 
point.  This simplification is a good one provided vertical accelerations are 
small, meaning that bed slopes are relatively small along the direction of the 
flow. For flows with strong vertical acceleration produced by abrupt bed 
variations (as may be caused by bedrock, or man-made structures), this 
assumption may not be accurate.   

In situations where equation (17) is a suitable approximation for 
equation (9), the pressure gradients in the horizontal equations of motion can 
be written in terms of the water surface elevation by integrating equation (17) 
in z and differentiating the result in each of the horizontal directions to obtain: 
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These relations simplify solution of the equations, because they reduce 
determining the pressure at each (x,y,z) location in the flow to only 
determining the water surface elevation at each horizontal (x,y) location.  
 
1.4    Coordinate systems 
 

All the equations above have been cast in a simple cartesian coordinate 
system. In practice, flow solutions are computed on a wide variety of 
coordinate systems, including cartesian, orthogonal curvilinear, and general 
coordinate systems for finite difference solutions and a variety of structured 
and unstructured grids for finite element solutions. The primary advantage of 
general or unstructured grids is that they allow the coordinate system to be  
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Figure 1. Schematic of the channel-fitted coordinate system. 

fitted precisely to the flow domain. The disadvantage is that they increase 
computational complexity considerably, and in cases where the bed and banks 
of the channel are evolving in time, the coordinate system must be 
recomputed at every time step, which is time consuming. In addition, most 
finite element solutions conserve mass only in a global sense; they typically 
are poor at enforcing mass conservation locally (Oliveira et al., 2000). This 
problem can be mitigated by careful construction of the flow grid, but it is 
difficult to avoid entirely, especially in channels with strong spatial 
accelerations produced by topography or channel curvature.  Oliveira et al. 
(2000) found errors in local mass conservation of up to 85% after only 3 days 
of simulation applying standard finite element methods to the Tagus Estuary. 
In channel flows, errors of this magnitude result in solutions that are not good 
representations of the real flow, and certainly could not be used to accurately 
compute the movement of sediment or other constituents within the flow.  

Developing a variety of commonly used coordinate systems is not 
within the scope of this model description, but it is worth mentioning one 
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specific orthogonal curvilinear system that has been widely used in modeling 
river flows. This coordinate system is essentially a generalization of a 
cylindrical coordinate system where the curvature of the coordinate system is 
allowed to vary in the streamwise direction. This so-called “channel-fitted” 
coordinate system has been used widely over the last 50 years or so, although 
most early applications involved only an incomplete set of equations. The 
system was formally derived and the full equations were published by Smith 
and McLean (1984). If the radius of curvature of the channel centerline is 
defined as R and s, n and z are defined as the streamwise, cross-stream, and 
vertical coordinates, respectively, as shown in figure (1), the hydrostatic 
assumption is employed,  and the viscous stresses are assumed to be 
negligibly small, the momentum equations in this coordinate system are given 
by the following: 
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If the existence of a scalar, isotropic eddy viscosity is assumed, we can rewrite 
equation (11) in the channel-fitted coordinate system, resulting in the 
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following expressions for the six independent components of the deviatoric 
Reynolds’ stress tensor:  
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where the overbars denoting Reynolds’ averaging of the equations have been 
omitted for simplicity.  Note that, if the radius of curvature of the channel 
centerline goes to infinity, meaning that the channel is straight, equations (20) 
through (24) revert back to the standard momentum equations with x and y 
oriented streamwise and cross-stream, respectively. However, if the channel is 
curved, the u and v velocity components in the s-n-z coordinate system still 
correspond to streamwise and cross-stream velocities, as the s-direction is 
always streamwise. Clearly, this would not be true if a cartesian system were 
used; the orientation of the x and y components of velocity with respect to the 
channel would change with position. Thus, the channel-fitted coordinate 
system is in some sense the natural one, as it divides local velocities vectors 
into streamwise and cross-stream components. This system is also the one 
typically used in analyzing field measurements in channels, because those 
measurements are frequently taken perpendicular to and parallel to sections 
that are themselves perpendicular to the channel centerline, or at least as close 
to perpendicular as practically possible. 

The first, and perhaps most confusing, step in applying the channel-
fitted coordinate system is determining the channel centerline and the radius 
of curvature of that centerline. This is not a purely mathematical process; it 
requires some consideration of what one is trying to capture in the channel-
fitted coordinate system.  As long as the numerics are correct and the full 
equations are used, the flow solution should be essentially independent of the 
coordinate system. Thus, one could use a cartesian coordinate system for a 
curved channel, or even a curved coordinate system for a straight channel.  
However, if one chooses a coordinate system that follows the path of the 
channel, at least approximately, two advantages arise: first, the number of grid 
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points required is minimized and second, the convective accelerations 
associated with the curvature of the channel appear primarily in centripetal 
acceleration terms, rather than in differential terms in the governing equations. 
This latter consideration is the key to choosing the channel centerline for the 
coordinate system. Basically, one wants to find a centerline that captures the 
average curvature of the flow streamlines, which are approximately the same 
as the large-scale curvature of the banks. As the flow “averages” the effects of 
the local banks over a length scale comparable to width, one can digitize a 
centerline for the coordinate system (which need not correspond exactly to the 
channel centerline) in two ways. Either the centerline can be digitized with 
points that are closer together than the channel width, and then filter the 
resulting curve over distances of about a channel width, or one may simply 
choose a number of points, each about a channel width apart. In either case, 
the radius of curvature is easily found by noting that, if θ  is the angle 
between the down valley direction and the local tangent to the centerline, the 
radius of curvature is given by: 

                                                       
1

R
s
θ −∂ =  ∂ 

                                         (25) 

  
The important thing to keep in mind when generating a channel-fitted 
coordinate system is that the centerline defining the coordinate system should 
be drawn to approximate the average streamline curvature in the reach of 
interest as well as possible. It is not appropriate to take a precise channel 
centerline defined by a detailed (i.e., with spatial resolution much smaller than 
a channel width) survey of the banks, as the resulting detailed centerline may 
have local curvature values that are very poor approximations to the average 
streamline curvature.  
 
2. Two-Dimensional Model Equations 
                                           
2.1   Spatial averaging 

 
In many cases, solution of the full momentum equations is not 

warranted by either the nature of the questions to be addressed in a given 
study, or as a result of the kind and amount of data available. For example, 
applying a three-dimensional model to several hundred channel widths of a 
given river for a study of floodplain inundation when cross-sections of 
bathymetry are only available every 10 channel widths is not reasonable, 
because getting good results with a three dimensional model would require 
much more topographic data. Generally, more complete models that yield 
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more precise results require much more input information in order to be 
applied relative to simpler models. In many cases, accurate results for a given 
purpose can be found using a simple model with relatively sparse topographic 
data.  The two most common ways of developing simpler models are scaling 
analyses and spatial averaging. Scaling analyses simply refers to the concept 
of using the time and length scales of the flow to discover what terms in the 
momentum equations are likely to be most important, and to develop simpler 
equations by retaining only these important terms. This is a powerful tool for 
certain flows, but it generally results in a model that is specifically applicable 
only to a certain flow or class of flows. Spatial averaging is a method whereby 
one or more dimensions are removed from the model equations by integrating 
or averaging over those dimensions. For example, development of a 1-d flow 
model requires averaging the momentum equations over a channel cross-
section, so that instead of solving for the velocity at every point in the 
channel, the model solves only for the cross-sectionally averaged velocity at 
each model cross-section. Note that while model simplicity is gained by 
spatial averaging, detail is lost.  

The most common applications of spatial averaging result in one-
dimensional models, two-dimensional models that treat the channel flow in 
planform (vertically averaged models), and two-dimensional models that treat 
the flow in the streamwise-vertical plane (cross-stream averaged models). 
While treating each of these in any detail is beyond the scope of this 
introduction to modeling flow and sediment transport, a single example is 
illustrative of some of the issues that arise in developing spatially averaged 
equations. Using < >  to represent vertical averaging, the vertical average of 
the u velocity component is defined as follows: 
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Applying this same operator to equations (20), (21), and (22), the following 
vertically averaged continuity and horizontal momentum equations arise in the 
channel-fitted coordinate system (again, note that the standard cartesian 
relations are easily found from the following by letting R go to infinity): 
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These equations, which have been used in variety of models for flow and bed 
evolution (Smith and McLean, 1984; Nelson and Smith, 1989a,b; Shimizu et 
al.; 1991), introduce a new kind of closure problem that is analogous to the 
turbulence closure problem introduced by Reynolds’ averaging. Terms that 
arise due to vertical correlations such as 2,  uv u< > < > and 2v< >  cannot 
be expressed in terms of simple vertically averaged variables like u< > and 

v< >except in the simple case where the velocities have no vertical structure 
whatsoever, so that uv u v< >=< >< > and 2 2u u< >=< > , and so forth. 
However, this is not generally true. For example, for a logarithmic velocity 
profile, the difference between 2u< >  and 2u< >  depends on the ratio of the 
roughness length to the flow depth, and is typically on the order of five or ten 
percent. In almost all vertically averaged models, the correlations are 
neglected, and one assumes that the equalities that hold for the case of no 
vertical structure are accurate in cases with vertical structure. However, some 
important effects are excluded when this assumption is used. For example, in 
long meander bends with weak topography, the term uv< > has been shown 
to be at least partially responsible for the movement of the high velocity 
region of the flow from the inner bank at the upstream part of the bend to the 
outer bank at the downstream part of the bend (Shimizu et al., 1991). This is 



 
Two-Dimensional Model Notes 15    

because helical cross-stream flow moves high velocity fluid outward near the 
surface of the flow, and low velocity fluid inward near the bed, resulting in a 
net momentum flux toward the outer bank. This effect is overwhelmed by 
topographic steering of the flow in bends shorter bends with point bars, but it 
is potentially an important effect in some natural flows. Even though this 
effect is dependent on vertical structure, it can be treated to some degree in 
vertically averaged models using dispersion coefficients. Similarly, in any 
case where spatial averaging is carried out, spatial correlations between 
variables in the dimensions averaged over can be treated at least at some 
approximate level. 
 
 
2.2    Dispersion coefficients 

 
A general definition of a dispersion coefficient between two variables is 

given by the following 
 

                                                ab
ab

a b
α < >=

< >< >
                                      (30) 

 
where  < >  may represent vertical averaging or some other spatial average 
(e.g., cross-sectional). Using this definition, equations (28) and (29) may be 
rewritten in terms of only u< > and  v< >  along with the dispersion 
coefficients , uu vvα α  and uvα . The values of these coefficients may be set 
from theoretical considerations, or through measurement. In either case, the 
coefficients allow at least approximate treatment of momentum fluxes that 
would otherwise be neglected. Another way to treat the correlation terms in 
averaged equations is to separate each variable into an averaged part and a 
deviation from that average, in parallel to the development of the Reynolds’ 
momentum equations. For example, if we use primes to denote departures 
from the vertical average, such that we can write '( ) ( )u z u u z=< > + , for 
example, we can rewrite equations (28) and (29) as follows: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 '1 2
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1 1                         
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N s n N R N s
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N s n N R
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N s n
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ρ

∂ ∂ < >< > ∂< > + < >< > − + =− +
− ∂ ∂ − − ∂

 < >∂ ∂< > + < > − + − ∂ ∂ − 
∂ ∂ + − − ∂ ∂ 

    (31) 

 

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

2 2
2 '1

1 1 1

1 1                  
1 1

1 1                           
1

ss nn
ns nn

ns nn znB B B

u v h gh Eu v h v h G
N s n N R N n

hh h
N s n N R

B B
N s n

τ ττ τ
ρ

τ τ τ
ρ

< > −< >∂ ∂ ∂< >< > + < > + + =− +
− ∂ ∂ − − ∂

 < − >∂ ∂< > + < > − + − ∂ ∂ − 
∂ ∂ + − − ∂ ∂ 

  (32) 

 
where the new terms are defined by 
 

( ) ( ) ( )
( )

2 2 ' '1' ' ' '
1 1

                          

u v h
F u h u v h

N s n N R
<∂ ∂= < > + < > −

− ∂ ∂ −                     (33) 

and 
 

( ) ( ) ( )
( )

2 2
2

' '1' ' ' '
1 1

                          

u v h
G u v h v h

N s n N R
< > − < >∂ ∂= < > + < > +

− ∂ ∂ −        (34) 

In cases where simple structure functions can be supplied for u and v based on 
measurements or theoretical arguments, these “extra” terms arising from 
correlations can be approximately evaluated. If these terms are set to zero, it is 
important to have an understanding of what kinds of processes are being 
neglected in the formulation.  Situations where spatial correlations are 
important can often be treated without solving the full equations. 
 
 
2.3    Bed stress closure 
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Whenever the equations of motion are averaged in the direction 

perpendicular to a boundary, closures for stress terms at that boundary must 
be supplied. In the vertically averaged equations used as an example, the 
boundary shear stress terms that arise in the horizontal momentum equations 
must be expressed in terms of u< > and v< > . There are many ways to do 
this, including using Manning’s or Chezy’s closure, as discussed below, but 
the most common in multidimensional models is to use a drag coefficient 
closure: 

 
                                               2 2( )B dC u vτ ρ= +                                     (35) 
 
Splitting this into component parts yields: 
 

                                2 2( )zs B dC u v uτ ρ= < > + < > < >                     (36) 
 
and 

 

                             2 2( )zn B dC u v vτ ρ= < > + < > < >                     (37) 
 
There are many other choices of bottom stress closure, but most can be 
directly related to this one. For example, if the flow can be assumed to have a 
vertical structure as follows: 
 
                                                    * ( , )ou u f z z=                                      (38) 
 
then the drag coefficient can be shown to be a function only of flow depth and 

0z : 
 

                                          
0

2

0
1 ( , )

h

d
z

C f z z dz
h

−
 

=  
  
∫                              (39) 

 
Closures for lateral shear stresses at banks can be handled in the same manner. 
Using this closure or others that are similar, the vertically averaged horizontal 
momentum equations and the continuity equation can be written entirely in 
terms of the vertically averaged u and v velocity components and the water 
surface elevation (if the flow is assumed hydrostatic). This is a well-posed 
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system of equations and unknowns, so a solution is straightforward. In 
general, and despite the fact that these assumptions are often not explicitly 
stated, any model developed from spatial averaging the full equations requires 
specification of dispersion coefficients and closures for stresses at boundaries. 

 
3.     NUMERICAL METHODS  
 
A full discussion of the various numerical methods used in computing flow, 
sediment transport, and bed evolution would be difficult to cover in a book, 
much less a short set of workshop notes. With the view in mind that the intent 
of this book is to provide an overview of the modeling interface, not tools in 
computational fluid mechanics, the subject of numerical techniques will be 
given short shrift herein. Nevertheless, this is an important part of 
constructing coupled models for predicting channel behavior, and particular 
care must be taken in choosing algorithms. There are two primary issues, 
somewhat related, that require special attention in choosing algorithms: 
stability and numerical dispersion.  
         Stability, or more precisely the lack of it, is easy to observe in model 
results. Poorly designed algorithms for computing flow and/or bed evolution 
will lead to unrealistic results that rapidly become more unrealistic as one 
iterates toward a steady solution or steps the model forward in time for 
unsteady solutions. Stability considerations for flow computations alone are 
generally outlined by the author of the flow computation method. Stability 
considerations for coupled flow/sediment/bed models are altogether more 
subtle and depend on a number of considerations. First, the time step of bed 
evolution must be chosen such that bed evolution is slow relative to the time 
scales associated with the flow field, as this is really the basic premise of the 
whole approach. If large changes in the bed and/or bank geometry occur 
within a single flow time step, the solution is almost certain to be unstable. 
Second, the numerical techniques must be chosen such that artificial phase 
lags between flow and sediment parameters are not introduced. This may 
seem complicated, but really it is simple common sense, especially if one 
considers the following example. If a simple one-dimensional model is used 
on a low-Froude number flow through a simple channel constriction, the 
cross-sectionally averaged velocity (which is all one computes in a true 1-D 
channel model) will be maximum at the constriction. If that velocity is used to 
compute bedload sediment transport, for example, the bedload transport will 
also be a maximum at the constriction, assuming normal relations between 
velocity, bed stress, and sediment flux. As the flux is maximum at the 
constriction, one expects that the spatial gradient in sediment flux is zero at 
that point. Since the spatial gradient of the flux is directly related to erosion 
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and deposition, the constriction will neither expand or contract further. 
However, noting that the flux must be less than the value at the constriction 
both upstream and downstream of the constriction, a paradox arises. If the 
spatial gradient in the flux is computed at the crest using the value at the crest 
and the one immediately upstream, erosion is predicted to occur at the 
constriction, and if  the value at the constriction and the value immediately 
downstream is used, deposition I predicted to occur at the constriction- both 
results are wrong, and will lead to runaway  expansion or contraction of the 
constriction.  This can be dealt with in a number of simple ways, but the 
example shows how phase lags introduced between the flow and sediment 
transport parameters can lead to instabilities in the bed that are not real. 
Numerical methods must be chosen to avoid artifical instability of the flow 
field as well as the coupled flow/bed/sediment system.  
        Excessive numerical dispersion is typically not as obvious to the user as 
stability problems are. One of the important physical elements of modeling 
flow and sediment transport is the treatment of the movement of mass and 
momentum due to true diffusion or advective processes that can be treated as 
diffusion-like (notably the transfer of momentum and mass by turbulence). 
Although a detailed mathematical discussion of this topic is clearly outside the 
scope of this chapter, one of the basic problems of treating continuous systems 
with discretized equations is that typically some artifical transfer of mass 
and/or momentum can occur as a result of the discretization process. This is 
typically referred to as numerical dispersion or numerical viscosity. The 
magnitude of these effects are strongly dependent on the numerical scheme 
chosen and the actual numerical grid. Ideally, one would like numerical 
dispersion to be vanishingly small relative to the real processes of dispersion 
that one is trying to treat in the numerical solution, thereby ensuring that the 
model results are consistent with real world observations. Unfortunately, 
numerical dispersion has an added benefit for models that tend to be unstable 
in that it effectively increases the stability of the model solutions. 
Accordingly, it is not unusual to see model results where the values of 
diffusivities are an order of magnitude or more larger than real world values. 
In fact, it is not uncommon to see diffusivities (especially lateral diffusivities 
in two or three-dimensional flow models) assigned unrealistically high values 
strictly to provide model stability. These models produce artificially smooth 
distributions of velocity and stress, and generally cannot provide accurate 
predictions of sediment flux or bed morphology. The hallmarks of this kind of 
approach for two or three-dimensional models are separation eddies that are 
very short relative to real world values, rapid spreading of shear layers in the 
streamwise direction, and near-bank shears that are low relative to 
observations. Typically, models with very large values of numerical 
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dispersion show insensitivity to the parameters of the model governing 
momentum exchange (e.g., drag coefficient, Manning’s N, turbulent 
diffusivity). Models with unrealistically high values of diffusivity often 
demonstrate inability to produce stable solutions for realistic values.  
 Although the problems of stability issues and numerical dispersion are 
especially important in coupled models for flow, sediment transport, and bed 
evolution, there are many other considerations to be made in developing 
numerical techniques for such approaches. Fortunately, there are many 
excellent texts on this subject; for specific examples of different numerical 
solution techniques, the reader is referred to excellent texts by Patankar (1980) 
and others. Furthermore, for well-written algorithmic elements that are useful 
in a variety of different approaches (e.g., tridiagonal solvers, matrix inverters, 
alternating direction implicit solvers, mesh generators, etc), the reader is 
encouraged to explore Numerical Recipes (Press et al., 1986), IMSL, MatLab, 
etc. 
 
 
4.     TWO-DIMENSIONAL MODELS 
 
In many cases, one-dimensional models may efficiently represent large-scale 
flow and sediment transport processes. However, if specific questions about 
at-a-point flow, sediment transport, and erosion and deposition must be 
answered, at least a two-dimensional model is required. For example, if the 
questions to be addressed are related to the position and amplitude of bars 
within the channel reach of interest, generally a two-dimensional model is 
necessary, as a one-dimensional model cannot predict the local flow and 
transport structure that gives rise to bar evolution. Generally, if the flow field 
of interest includes steering of the flow around islands or bars, or if there is 
significant cross-stream variability in the flow, at least a two-dimensional 
model should be applied to predict local sediment transport or changes in bed 
morphology.  Notably, in some cases where one-dimensional models yield 
cross-sectionally averaged velocities that are incapable of entraining sediment, 
two-dimensional computations will show a high-velocity thalweg in the 
channel in which sediment is in motion. Obviously, in situations like this, a 
two-dimensional approach must be used to get accurate predictions of 
sediment flux and bed evolution. 
 
 
4.1   Two-dimensional processes 
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While the preceding paragraph gives some idea as to what one gains in going 
to a two-dimensional approach, it is worth restating this in terms of specific 
physical processes. In going from a one-dimensional to a two-dimensional 
model, three critical improvements are gained. First, instead of predicting only 
the cross-sectionally averaged component of downstream velocity and bed 
stress, the model predicts the value of vertically averaged downstream 
velocity and bed stress at several points across the channel. This means that 
the model can explicitly treat situations with large cross-stream velocity 
gradients and even flow separation, even when computing sediment transport. 
Second, the model also predicts the cross-stream components of vertically 
averaged velocity and bed stress at each point in the computational grid. As 
already noted above, this means that a two-dimensional model can handle 
steering of the flow around bars and islands.  This capability is critically 
important for prediction of the evolution and stability of bars in rivers, as the 
basic instability leading to these is often associated with the interaction of 
topographic steering of the flow and the sediment transport (Nelson and 
Smith, 1989b). Finally, two-dimensional models allow prediction of cross-
stream structure in the water surface elevation, while one-dimensional 
approaches do not. In many cases, superelevation of the water surface due to 
channel curvature or bathymetric variability results in cross-stream gradients 
in water surface elevation that are much larger than downstream components, 
so if accurate local water edge elevation are required, at least a two-
dimensional model must be applied. 

These three basic enhancements have several corollaries. Because it 
yields spatially localized quantities, a two-dimensional approach can be used 
to predict near-bank velocities, stresses, and sediment evacuation rates, which 
may be critical for predicting bank erosion. In addition, because these 
approaches detailed information in a planform sense, they are useful for 
evaluating fields other than simply sediment transport and bed evolution. For 
example, two-dimensional modeling approaches are currently becoming the 
standard for habitat modeling. Habitat evaluation for many riparian species 
typically requires physical variables including vertically averaged velocity, 
depth, substrate, and so forth. A one-dimensional model could only evaluate 
habitat on a cross-sectional basis, which is not sufficient in most cases, as 
streamwise variations are typically unimportant relative to lateral ones.  
 
 
4.2     Two-dimensional flow models 
 

There are a wide variety of steady and unsteady two-dimensional flow 
models available. As the equations expressing conservation of mass and 
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momentum in a vertically averaged flow were developed in the discussion of 
spatial averaging in section 3, they will not be repeated here. The available 
models are more or less evenly split between finite difference and finite 
element solutions, with the advantages/disadvantages already discussed 
above. Readily available government models include FESWMS (available at 
www.usgs.gov/software) and HEC2D (available at www.hec.usace.army.mil) 
among others. There are also a variety of commercial two-dimensional 
modeling packages available, including SMS and certain versions of MIKE. 

As noted above, many two-dimensional mobile bed models use steady 
flow solutions, but can handle hydrographs by varying the discharge in time 
without including the unsteady term in the momentum equations (this is called 
assuming the flow is “quasi-steady”). This is a reasonable assumption only if 
the unsteady term in the momentum equation can be shown to be small 
relative to the other terms in the equation. Although there are quite a few two-
dimensional flow models available for use, there are still only a few coupled 
flow, sediment transport, and bed evolution models.  
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