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PREFACE

The methods and guidelines described in this report are designed to promote accuracy when sim-
ulating complex systems with mathematical models that need to be calibrated, and in which the calibration 
is accomplished using inverse modeling. This report focuses on the implementation of the described meth-
ods in the computer codes UCODE (Poeter and Hill, 1998) and MODFLOWP (Hill, 1992), which perform 
inverse modeling using nonlinear regression, but the methods have been implemented in other codes. The 
guidelines as presented depend on statistics described in this work, but other statistics could be used. Many 
aspects of the approach are applicable to any model calibration effort, even those conducted without in-
verse modeling. The methods and guidelines presented have been tested in a variety of ground-water mod-
eling applications, many of which are cited in this report, and are described in the context of ground-water 
modeling concepts. They are, however, applicable to a much wider range of problems.
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METHODS AND GUIDELINES FOR EFFECTIVE 
MODEL CALIBRATION

____________________________________

By Mary C. Hill
____________________________________

ABSTRACT

This report documents methods and guidelines for model calibration using inverse model-
ing. The inverse modeling and statistical methods discussed are broadly applicable, but are present-
ed as implemented in the computer programs UCODE, a universal inverse code that can be used 
with any application model, and MODFLOWP, an inverse code limited to one application model. 
UCODE and MODFLOWP perform inverse modeling, posed as a parameter-estimation problem, 
by calculating parameter values that minimize a weighted least-squares objective function using 
nonlinear regression. Minimization is accomplished using a modified Gauss-Newton method, and  
prior, or direct, information on estimated parameters can be included in the regression. Inverse 
modeling in many fields is plagued by problems of instability and nonuniqueness, and obtaining 
useful results depends on (1) defining a tractable inverse problem using simplifications appropriate 
to the system under investigation and (2) wise use of statistics generated using calculated sensitiv-
ities and the match between observed and simulated values, and associated graphical analyses.  
Fourteen guidelines presented in this work suggest ways of constructing and calibrating models of 
complex systems such that the resulting model is as accurate and useful as possible.

INTRODUCTION

Problem
In many fields of science and engineering, mathematical models are used to represent com-

plex processes. Commonly, quantities simulated by the mathematical model are more readily mea-
sured than are model input values, and model calibration is used to construct a model and estimate 
model input values. In model calibration, various parts of the model, including the value of model 
input values, are changed so that the measured values (often called observations) are matched by 
equivalent simulated values, and, hopefully, the resulting model accurately represents important 
aspects of the actual system.

The model inputs that need to be estimated are often distributed spatially and(or) temporal-
ly, so that the number of parameter values could be infinite. The number of observations, however, 
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generally is limited and able to support the estimation of relatively few model input values. Ad-
dressing this discrepancy is one of the greatest challenges faced by modelers in many fields. Gen-
erally a set of assumptions are introduced that allows a limited number of values to be estimated, 
and these values are used to define selected model inputs throughout the spatial domain or time of 
interest. In this work, the term "parameter" is reserved for the values used to characterize the model 
input.  Alternatively, some methods, such as those described by Tikhonov (1977) typically allow 
more parameters to be estimated, but these methods are not stressed in the present work.

Not surprisingly, formal methods have been developed that attempt to estimate parameter  
values given some mathematically described process and a set of relevant observations. These 
methods are called inverse models, and they generally are limited to the estimation of parameters 
as defined above. Thus, the terms "inverse modeling" and "parameter estimation" commonly are 
synonymous, as in this report.

For some processes, the inverse problem is linear, in that the observed quantities are linear 
functions of the parameters. In many circumstances of practical interest, however, the inverse prob-
lem is nonlinear, and solution is much less straightforward than for linear problems. This work dis-
cusses methods for nonlinear inverse problems.

Despite their apparent utility, inverse models are used much less than would be expected, 
with trial-and-error calibration being much more commonly used in practice. This is partly because 
of difficulties inherent in inverse modeling technology. Because of the complexity of many real 
systems and the sparsity of available data sets, inverse modeling is often plagued by problems of 
insensitivity, nonuniqueness, and instability. Insensitivity occurs when the observations do not 
contain enough information to support estimation of the parameters. Nonuniqueness occurs when 
different combinations of parameter values match the observations equally well. Instability occurs 
when slight changes in, for example, parameter values or observations, radically change inverse 
model results. All these problems are exacerbated when the inverse problem is nonlinear.

Though the difficulties make inverse models imperfect tools, recent work has clearly dem-
onstrated that inverse modeling provides capabilities that help modelers take greater advantage of 
their models and data, even when the systems simulated are very complex. The benefits of inverse 
modeling include (1) clear determination of parameter values that produce the best possible fit to 
the available observations; (2) diagnostic statistics that quantify (a) quality of calibration, (b) data 
shortcomings and needs, (3) inferential statistics that quantify reliability of parameter estimates 
and predictions; and (4) identification of issues that are easily overlooked during non-automated 
calibration. Quantifying the quality of calibration, data shortcomings and needs, and confidence in 
parameter estimates and predictions are important to communicating the results of modeling stud-
ies to managers, regulators, lawyers, and concerned citizens, as well to the modelers themselves. 
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Purpose and Scope
This report describes the theory behind inverse modeling and guidelines for its effective ap-

plication. It is anticipated that the methods discussed will be useful in many fields of the earth sci-
ences, as well as in other disciplines. The expertise of the author is in the simulation of ground-
water systems, so the examples presented in this report all come from this field, which is charac-
terized by three-dimensional, temporally varying systems with a high degree of spatial variability 
and sparse data sets. 

For convenience, the methods and guidelines are presented in the context of the capabilities 
of specific inverse models. The models chosen are UCODE (Poeter and Hill, 1998) and MOD-
FLOWP (Hill, 1992). These models were chosen because they were designed using the methods 
and guidelines described in this report, and because UCODE is a universal inverse code with broad 
applicability, and MODFLOWP  is an inverse code programmed using the most accurate methods 
available for calculation of sensitivities. 

The report is dominated by sections on methods and guidelines of inverse modeling using 
nonlinear regression. Because computer execution time is nearly always of concern in inverse 
modeling, a section is dedicated to issues related to this problem. There have been a number of field 
applications using the methods and guidelines presented in this report, and these are listed. Finally, 
a section is devoted to the use of the guidelines with inverse models with capabilities that differ 
from those of UCODE and MODFLOWP.

Previous Work
The methods presented are largely derived from Hill (1992) and Cooley and Naff (1990) 

and references cited therein. Various aspects of the suggested guidelines have a long history, and 
relevant references are cited when the guidelines are presented. To the author’s knowledge, no sim-
ilar set of guidelines that provide as comprehensive a foundation as those presented here have been 
presented elsewhere.

Acknowledgments
The author would like to acknowledge the following colleagues and students for insightful 

discussions and fruitful collaborations: Richard L. Cooley, Richard M. Yager, Claire Tiedeman, 
Frank D’Agnese, and Ned Banta of the U.S. Geological Survey, Eileen P. Poeter of the Colorado 
School of Mines, Evan R. Anderman of ERA Ground-Water Modeling, LLC, Heidi Christiansen 
Barlebo of the Geological Survey of Denmark and Greenland, and Steen Christensen of Aarhus 
University, Denmark. In addition, thought-provoking questions from students and MODFLOWP 
users throughout the years have been invaluable. 
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METHODS OF INVERSE MODELING USING NONLINEAR 
REGRESSION

Nonlinear regression, instead of the easier to use linear regression, is needed when simu-
lated values are nonlinear with respect to parameters being estimated. This is common in ground-
water problems, as discussed by Hill (1992) and Sun (1994), among others, and in other systems. 
Model nonlinearity produces important complications to regression and has been the topic of con-
siderable investigation in several fields. Seber and Wild (1989) is an excellent upper-level text on 
nonlinear regression. 

Weighted Least-Squares and Maximum-Likelihood Objective Functions
The objective function is a measure of the fit between simulated values and the observa-

tions that are being matched by the regression. The purpose of regression is to calculate values of 
defined parameters that minimize the objective function; the resulting values are said to be "opti-
mal," "optimized," or "estimated by regression." The weighted least-squares objective function 
S(b), used in UCODE and MODFLOWP can be expressed as:

S(b) = (1)

where,
b is a vector containing values of each of the NP parameters being estimated;
ND is the number of observations (called N-OBSERVATIONS in the UCODE documentation);
NPR is the number of prior information values (called NPRIOR in the UCODE documentation);
NP is the number of estimated parameters (called N-PARAMETERS in the UCODE documenta-

tion);
yi is the ith observation being matched by the regression;

 is the simulated value which corresponds to the ith observation (a function of b);

Pp is the pth prior estimate included in the regression;

 is the pth simulated value (restricted to linear functions of b in UCODE and MOD-

FLOWP);
ωi is the weight for the ith observation;

ωp is the weight for the pth prior estimate.

The simulated values related to the observations are of the form = f(b,ξi), where ξi 

are independent variables such as location and time, and the function may be nonlinear in b and ξi. 

Commonly, complex problems require numerical solution, and the function is actually a numerical 
model. 

ωi yi y’i b( )–[ ]2 ωp Pp P’p b( )–[ ]2

p 1=

NPR

∑+

i=1

ND

∑

y’i b( )

P’p b( )

y’i b( )
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The simulated values related to the prior information are restricted in this work to be of the 

form =Σapjbj, which are linear functions of b. Most prior information equations have only 

one term with a coefficient equal to 1.0, so the contribution to the objective function is simply the 
prior information value of a parameter minus its estimated value. Additional terms are needed 
when the prior information relates to a linear function that includes more than one parameter value. 
For example, additional terms are included in a ground-water inverse model to account for the fol-
lowing circumstances: seasonal recharge rates are estimated and measurements of annual recharge 
are available, so that the Pp value equals the seasonal recharge rate and the summation includes 

terms for the seasonal recharge rates; or storage coefficients in two model layers are estimated and 
an aquifer test was conducted that measured the combined storage coefficient, so that the Pp value 
equals the storage coefficient from the aquifer test, and the summation includes terms for the layer 
storage coefficients.

A simple problem and its weighted least-squares objective function surface are shown in 
figure 1. The figure was constructed by calculating equation 1 for this problem using different sets 
of parameter values T1 and T2. The log of the resulting numbers were contoured to produce the 
contour map of figure 1B. For a linear problem, the objective function surface would be a smooth 
bowl, and the contours would be concentric ellipses or parallel straight lines symmetrically spaced 
about a trough. The nonlinearity of Darcy’s Law with respect to hydraulic conductivity results in 
the much different shape shown in figure 1B.

The differences and  are called residuals, and represent the 

match of the simulated values to the observations. Weighted residuals are calculated as 

 and  and represent the fit of the regression in the context 

of how the residuals are weighted. 

P'p b( )

yi y'i b( )–[ ] Pp P'p b( )–[ ]

ωi
1 2⁄ yi y'i b( )–[ ] ωp

1 2⁄ Pp P'p b( )–[ ]
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Figure 1: Objective function surfaces for a simple example. (a) The sample problem is a one-di-
mensional porous media flow field bounded by constant heads and consisting of three 
transmissivity zones and two transmissivity values. (b) Log of the weighted least-
squares objective function that includes observations of hydraulic heads h1 through h6, 
in meters, and flow q1, in cubic meters per second. The observed values contain no error. 
(c) Log of the weighted least-squares objective function using observations with error, 
and a three-dimensional protrayal of the objective function surface. Sets of parameter 
values produced by modified Gauss-Newton iterations are identified (+), starting from 
two sets of starting values and progressing as shown by the arrows.  (from Poeter and 
Hill, 1997)
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In equation 1, a simple diagonal weight matrix was used to allow the equation to be written 
using summations instead of matrix notation. More generally, the weighting requires a full weight 
matrix, and equation 1 is written as:

S(b) = (2)

where the weight matrix,  and the vectors of observations and simulated values,  and  

include terms for both the observations and the prior information, as displayed in Appendix A, and 

 is a vector of residuals.  Full weight matrices are supported for most types of observations and 

prior information in MODFLOWP. With a full weight matrix, MODFLOWP calculates weighted 

residuals as , where the square-root of the weight matrix is calculated such that 

ω1/2 is symmetric. 

An alternative derivation of the least-squares objective function involves the maximum-
likelihood objective function. In practical application, the maximum-likelihood objective function 
reduces to the least-squares objective function (as shown in Appendix A), but the maximum-like-
lihood objective function is presented here and its value is calculated and printed by UCODE and 
MODFLOWP because it can be used as a measure of model fit (Carrera and Neuman, 1986; Loa-
iciga and Marino, 1986). The value of the maximum-likelihood objective function is calculated as:

S’(b) =  (ND+NPR) ln2π - ln (3)

where  is the determinant of the weight matrix, and it is assumed that the common error variance 

mentioned in Appebdix A and C equals 1.

Modified Gauss-Newton Optimization
The Gauss-Newton optimization method is an iterative form of standard linear regression, 

and works well only if modified by the addition of, for example, a damping parameter and a Mar-
quardt parameter, as described below. The modified Gauss-Newton method presented here closely 
follows that of Cooley and Naff (1990, ch. 3), which is similar to methods presented by Seber and 
Wild (1989), and other texts on nonlinear regression.

Normal Equations and the Marquardt Parameter

Parameter values that minimize the objective function are calculated using normal equa-
tions. One of the differences between linear regression and nonlinear regression is that in linear re-
gression parameter values are estimated by solving the normal equations once, while nonlinear 
regression is iterative in that a sequence of parameter updates is calculated, solving linearized nor-

y y’ b( )–[ ]T
 ω y y’ b( )–[ ] e

Tωe=

ω y y’ b( )

e

ω1 2⁄ y y’ b( )–[ ]

ω y y’–( )T
 ω y y’–( )+

ω
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mal equations once for each update. Thus, in nonlinear regression there are parameter-estimation 
iterations. The normal equations and the iterative process for the modified Gauss-Newton optimi-
zation method used in UCODE and MODFLOWP can be expressed as:

(CTXT
r ω Xr C + Imr)C

-1dr = CT XT
r ω (y - y’ (br))  (4a)

br+1  = ρrdr  + br (4b)

where 
r    is the parameter-estimation iteration number; 

Xr is the sensitivity matrix evaluated at parameter estimates br, with elements equal to  (calcu-

lated by the sensitivity equation method in MODFLOWP and using forward or central 
differences in UCODE); 

 is the weight matrix (can be a full matrix in MODFLOWP); 

(XTω X)is a symmetric, square matrix of dimension NP by NP that is an estimate of the Fisher in-
formation matrix, and which is used to calculate statistics described in the section "Pa-
rameter Statistics";

C is a diagonal scaling matrix with element cjj equal to [(XTω X)jj]
-1/2, which produces a scaled 

matrix with the smallest possible condition number (Forsythe and Strauss, 1955; Hill, 
1990); 

dr is a vector with the number of elements equal to the number of estimated parameters. It is used 

in eq. 4b to update the parameter estimates; 
I is an NP dimensional identity matrix;
mr is the Marquardt parameter (Marquardt, 1963); and 

ρr is a damping parameter. 

Figure 1C shows the paths that this modified Gauss-Newton method followed from two sets of  
starting parameter values to the minimum of the objective-function surface of the simple example 
problem.

A quasi-Newton term can be added to the matrix on the left-hand side of equation 4a, as 
described in Appendix B, to aid convergence of the modified Gauss-Newton equations in some cir-
cumstances. The modified Gauss-Newton method used in this work also could be termed a Leven-
berg-Marquardt method.

The Marquardt parameter is used to improve regression performance for ill-posed problems 
(Theil, 1963; Seber and Wild, 1989). Initially mr=0 for each parameter-estimation iteration r. For 

bj∂
∂y’i

ω
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iterations in which the vector d defines parameter changes that are unlikely to reduce the value of 
the objective function (as determined using the condition described by Cooley and Naff, 1990, p. 

71-72), mr is increased according to mr
new = 1.5 mr

old + 0.001 until the condition is no longer met. 

The damping parameter, ρr, can vary in value from 0.0 to 1.0 and modifies all values in the 

parameter change vector dr by the same factor. Thus, in vector terminology, the direction of dr is 

preserved. The damping parameter is used for two reasons: (1) to ensure that the absolute values 
of fractional parameter value changes are all less than a value specified by the user (MAX-
CHANGE of UCODE; DMAX of MODFLOWP), and (2) to damp oscillations that occur when 
elements in dr and dr-1 define opposite directions (Cooley, 1993),  implemented as described in Ap-

pendix B. Fractional parameter value changes are calculated for each parameter as

(bj
r+1-bj

r) / |bj
r|      j=1,NP (5)

where bj
r is the jth element of vector br, that is, the value of the jth parameter at parameter estima-

tion iteration r. If the largest absolute value of the NP values of equation 5 is greater than MAX-
CHANGE (or DMAX for MODFLOWP), ρr is calculated in many circumstances as 

As discussed by Cooley and Naff (1990, p.70), modified Gauss-Newton optimization typ-
ically converges within "a number of iterations equal to five or twice the number of parameters, 
whichever is greater." Convergence will tend to occur sooner for well-conditioned problems, and 
later for poorly conditioned problems. It is rarely fruitful to increase the number of iterations to 
more than twice the number of parameters, which can take large amounts of computer time. It gen-
erally is more productive to consider alternative models (See the guidelines discussed later in this 
report).

The performance of the modified Gauss-Newton method can be descibed using figure 2 
which shows the effects of the linearization that occurs at each iteration of the modified Gauss-
Newton method. The data shown in figure 2A represent ground-water level drawdown over time 
caused by pumpage from a single well. The model used is the Theis equation, which is a nonlinear 
functionof tranmissivity and the storage coefficient. In this problem, the nonlinear model f(b,ξ), 
which was presented after equation1, is the Theis equation, the observations are the drawdowns 
listed in figure 2A, and the parameters to be estimated are the transmissivity and the storage coef-
ficient.
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Figure 2:  Objective-function surfaces for a Theis equation model. The system characteristics and 
ten observed drawdowns as reported by Cooley and Naff (1990, p.66) are shown in (A). 
The resulting nonlinear objective-function surface is shown in (B), with the minimum 
designated using a large dot. The same dot appears in (C) and (D). Objective-function 
surfaces for the same range of parameter values linearized using the Gauss-Newton ap-
proximation about the parameter values identified by the X’s are shown in (C) and (D).

The actual, nonlinear, objective-function surface is shown in figure 2B. Approximations of 
the objective function surface produced by linearizing the model, here the Theis equation, about 
the parameter values marked by the x’s are shown in figures 2C and 2D. The problem is linearized 
by replacing the model (here the Theis equation) with the first two terms of a Taylor series expan-

sion, and using the linearized model to replace y’
i in equation 1. The mathematical form of the lin-

(A)

Time, in seconds Drawdown, in feet
  480                        1.71
1020                        2.23
1500                        2.54
2040                        2.77
2700                        3.04
3720                        3.25
4920                        3.56      

Pumpage = 1.16 ft3/s
Distance from pumping to observa-
tion well = 175 ft

(B)

(C) (D)
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earized model is presented in Appendix C. Not surprizingly, the linearized surfaces approximate 
the nonlinear surface well near the parameter values for which the linearization occurs, and less 
well further away.  

For each iteration of the modified Gauss-Newton method, the model is linearized either 
about the starting parameter values or the parameter values estimated at the last parameter-estima-
tion iteration.  Then, equation 4a is solved to produce a vector, dr,which generally extends from the 

set of parameter values about which the linearizaion occurs  to the minimum of the linearized ob-
jective-function surface.

Stated anthropogenically, at the current set of parameter values, the regression “sees” a lin-
earized objective-function surface and tries to change the parameter values to reach the minimum 
of that linearized surface. Figure 2C shows a linearized objective-function surface obtained by us-
ing a Taylor series expansion about a set of parameter values far from the minimum. The parameter 
values which minimize the linearized surface are far from those that minimize the nonlinear sur-
face, so that proceeding all the way to the linearized minimum is likely to hamper attempts to find 
the minimum of the nonlinear surface. Proceeding part way to the linearized surface, however, 
could be advantageous. In figure 2C, moving all the way to the minimum of the linearized objec-
tive-function surface would produce a negative value of transmissivity, and the fractional change 
in the parameter value would exceed 1. In this circumstance, the damping parameter of the modi-
fied Gauss-Newton method, ρr in equation 4b, could be used to limit the change in the transmis-

sivity value, or the transmissivity parameter could be log-transformed to ensure positive values, as 
discussed below. 

Figure 2D shows an objective function surface obtained by linearizing about a point near 
the minimum and shows that a linearized model closely replicates the objective-function surface 
near the mimimum. This has consequences for the applicability of the inferential statistics, such as 
confidence intervals, discussed later in this report, and these consequences are briefly outlined 
here. If the designated significance level is large enough, the inferential statistics calculated using 
linear theory are likely to be accurate if the other required assumptions hold. As the significance 
level declines, a broader range of parameter values needs to be included in calculating the inferen-
tial statistics, and the more nonlinear parts of the objective-function surface become important. In 
that circumstance, the stated significance level of the linear inferential statistics becomes less reli-
able. Thus, a 90-percent confidence interval (10-percent significance level) might be well estimat-
ed using linear theory, while a 99-percent confidence interval (1-percent significance level) might 
not.

Convergence Criteria

Convergence criteria are needed for the modified Gauss-Newton iterative process.  In 
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UCODE and MODFLOWP, parameter estimation converges if either one of two convergence cri-

teria are satisfied.  First, convergence is achieved when the largest absolute value of dj
r/bj

r, j=1,NP, 

is less than a user-defined convergence criterion (TOL of UCODE and MODFLOWP). That is,

|dj
r
 /bj

r| < TOL  for all j=1,NP (7)

where dj
r is the jth element of dr, the parameter change vector of equation 4; bj

r is the ith element 

of br, the vector of parameter values being changed in equation 4; and NP is the number of estimat-

ed parameters. If bj
r equals 0.0, 1.0 is used in the denominator.  Preferably, this convergence crite-

rion is satisfied by the final calibrated model with TOL assigned a value no larger that 0.01.

Second, the nonlinear regression converges if the sum of squared objective function (eq. 1 
or 2) changes less than a user-defined amount (SOSR of UCODE and MODFLOWP) for three se-
quential iterations. This convergence criteria often is useful early in the calibration process to avoid 
lengthy simulations that fail to improve model fit.

Log-Transformed Parameters

The parameters in vector b of equation 1 can either be the native values directly relevant to 
the system being considered, or the log-transform of the native values. Log-transforming parame-
ters can produce an inverse problem that converges more easily, and prevents the actual parameter 
values from becoming negative (Carrera and Neuman, 1986). In UCODE and MODFLOWP, the 
log-transform is implemented using the natural logarithm, but the input and output include base 10 
logarithms because these are easier for most modelers to use (MODFLOWP was converted to the 
base 10 user interface in version 3.3).

UCODE and MODFLOWP are designed so that even when there are log-transformed pa-
rameter values, the user generally sees the more readily understood native values. Thus, for exam-
ple, even when parameters are log-transformed, the starting parameter values specified by the user 
are native values. There are, however, three situations in which either model input or output are 
affected by a parameter being log-transformed.

 The one model input situation occurs when there is prior information on the log-trans-
formed parameter value, in which case there can only be one parameter included in the prior infor-
mation (one term in the summation presented after eq. 1), and the specified statistic needs to be 
related to the base 10 log of the parameter. The statistic can be calculated using methods described 
under Guideline 6, described later in this report.
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  The first model output situation is fairly subtle and will not be noticed by most users. It 
involves calculation of the damping parameter and the convergence criteria of equation 4, which 
are calculated to control or measure the change in the native parameter values. The printed damp-
ing parameter value, therefore, can not always be derived easily by the user. Calculation of the 
damping parameter is described in Appendix B.

 The second model output situation is that log-transformed parameter estimates, standard 
deviations, coefficients of variation, and confidence interval limits appear in the output file along 
with the exponential of these values. In most circumstances, the log-transformed values are ignored 
by the user and the native values are used instead. Related issues are discussed in the section "Stan-
dard Deviations, Linear Confidence Intervals, and Coefficients of Variation" later in this report.

Lack of Limits on Estimated Parameter Values

Upper and lower limits on parameters that constrain possible estimated values are com-
monly available in inverse models (for example, PEST, Doherty, 1994) and are suggested by, for 
example, Sun (1994, p. 35). While such limiting constraints on parameter values may, at first, ap-
pear to be necessary given the unrealistic parameter values that can be estimated through inverse 
modeling, Hill and others (1998), using a complex synthetic test case, demonstrate that this prac-
tice can disguise more fundamental modeling errors. Poeter and Hill (1996) use a simple synthetic 
test case to further demonstrate the concept, and in Anderman and others (1996), unrealistic opti-
mized values of recharge in a field problem revealed important model construction inaccuracies. 
As discussed in the section "Guideline 5: Use Prior Information Carefully," unrealistic estimated 
parameter values are likely to indicate either (1) that the data do not contain enough information to 
estimate the parameters, or (2) there is a more fundamental model error. In the first circumstance, 
the best response is to use prior information on the parameter value, which will tend to produce an 
estimate that is close to the most likely value, instead of at the less likely value that generally con-
stitutes the imposed upper or lower limit. In the second circumstance, the best response is to find 
and resolve the error. UCODE, like MODFLOWP, does not support constraining limits on param-
eter values because a circumstance in which the use of such limits is the best way to proceed has 
not been identified.

Weights for Observations and Prior Information
Observations and prior information typically need to be weighted in the regression. In most 

circumstances, diagonal weight matrices are used, and it is useful to introduce weighting in this 
simpler context. Hill (1992) presents a detailed discussion of the assumptions implied by using a 
diagonal weight matrix. 

Weighting performs two related functions. The most fundamental function is that the 
weighting needs to produce weighted residuals that have the same units so that they can be squared 
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and summed using equation 1 or 2. Obviously, summing numbers with different units produces a 
nonsensical result. The second function of the weighting is to reduce the influence of observations 
that are less accurate and increase the influence of observations that are more accurate. 

These two functions are directly related to the theoretical requirement of the weighting, as 
derived in Appendix C. This requirement is that the weight matrix be proportional to the inverse 
of the variance-covariance matrix of the observation errors. For a diagonal weight matrix, this re-
quirement means that the weights of equation 1 need to be proportional to 1 divided by the variance 
of the measurement error. More detail on how to determine values for weights and interpret regres-
sion results relative to the weighting is presented in the section "Guideline 6: Assign weights which 
reflect measurement errors."

Diagnostic and Inferential Statistics
A powerful aspect of using nonlinear regression is the useful statistics that can be generat-

ed.  The statistics presented here can be used diagnostically to measure the amount of information 
provided by the data and to identify model error (bias), or to infer the uncertainty with which values 
are calculated. The statistics also can be used to determine what aspects of the model are important 
to predictions of interest. Difficulties common to nonlinear regression make diagnostic statistics 
invaluable to its success, and the diagnostic use of statistics is stressed in this work. 

The sections below show how the statistics are calculated. Use of the statistics during re-
gression is discussed in the following section "Guidelines for Effective Model Calibration," and 
example figures are provided there as listed in the following section “Example Figures.”

Statistics for Sensitivity Analysis

Dimesionless Scaled Sensitivities and Composite Scaled Sensitivities

When a diagonal weight matrix is used, the scaled sensitivities,  are calculated as in 

Hill (1992):

(8)

where

 is the simulated value associated with the ith observation;

 is the jth estimated parameter;

 is the sensitivity of the simulated value associated with the ith observation with respect to the 
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jth parameter, and is evaluated at ;

 is a vector which contains the parameter values at which the sensitivities are evaluated. Because 

the problem is nonlinear with respect to many parameters of interest, the value of a sen-

sitivity will be different for different values in ; and

 is the weight of the ith observation.

Similar scaling was employed by Harvey and others (1996). These scaled sensitivities are dimen-
sionless quantities that can be used to compare the importance of different observations to the es-
timation of a single parameter or the importance of different parameters to the calculation of a 
simulated value. In both cases, greater absolute values are associated with greater importance.

For the full weight matrix that can be used in MODFLOWP, the two indices on the weight 
matrix need to be different, and scaled sensitivities are calculated as:

(9)

Composite scaled sensitivities are calculated for each parameter using the scaled sensitivi-
ties for all observations, and indicate the total amount of information provided by the observations 

for the estimation of one parameter. The composite scaled sensitivity for the jth parameter, , 

is calculated as (Hill, 1992; Anderman and others, 1996; Hill and others, 1998):

                (10)

where  is the number of observations being used in the regression and the quantity in paren-

theses equals the scaled sensitivities of equation 8 or 9. The composite scaled sensitivity was de-
rived from a similar statistic used by R.L. Cooley (U.S. Geological Survey, written commun., 
1988), equals a scaled version of the square root of the diagonal of the Fisher information matrix 
(XTω X), and is similar in form and function to the CTB statistic of Sun and Yeh (1990), but is 
scaled differently. The composite scaled sensitivity is independent of the observed values and, 
therefore, model fit.

One-percent Scaled Sensitivities
While dimensionless sensitivities are needed to compare the importance of different types 

of observations to the estimation of parameter values, for other purposes it is useful to have dimen-
sional quantities.  One-percent scaled sensitivities are calculated as 
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                                                                                                       (11)

and approximately equal the amount that the simulated value would change if the parameter value 
increased by one percent.

 The one-percent scaled sensitivities cannot be used to form a composite statistic because 
they generally have different units. Also, the omission of the weighting from equation 11 means 
that the one-percent scaled sensitivities do not reflect the influence of the observations on the re-
gression as well as the dimensionless scaled sensitivities. The omission of the weighting has an ad-
vantage, however, in that one-percent scaled sensitivities can be calculated easily for any simulated 
quantity without having to assign the weighting.  In MODFLOWP, sensitivities for hydraulic heads 
are calculated for the entire grid because sensitivities are calculated using the sensitivity equation 
sensitivities. These sensitivities are used to calculate one-percent scaled sensitivities for hydraulic 
heads that can be contoured just like hydraulic heads can be contoured.  The resulting one-percent 
scaled sensitivity maps can be used to identify where additional observations of hydraulic head 
would be most important to the estimation of different parameters and to compare the sensitivity 
of hydraulic heads throughout the model to different paramters. Similar maps can be produced by 
UCODE by defining every point (or many points) in the model grid as an observation. For analyt-
ical models, they would be defined at enough points to create an accurate map.

Prediction Scaled Sensitivities
Sensitivities can be calculated for simulated predictions as dz’l/dbj, where z’l  is the simu-

lated prediction. These sensitivities indicate the importance of the parameter values to these pre-
dictions, and can be scaled to produce statistics by which to compare the relative importance of 
different parameters. One useful scaling results in a statistic that indicates the percentage change 
in the prediction produced by a one-percent change in the parameter value. This is defined in this 
work as a prediction scaled sensitivitiy (pssj), and is calculated as:

pssj=(dz’l/dbj) (bj/100) (100/z’l) (12)

The prediction scaled sensitivity is the one-percent sensitivity of equation 11 calculated for predic-
tions, and multiplied by the last term of equation 12.

A different scaling is needed when z’l = 0.0, or if the change in the predictive quantity rel-

ative to, perhaps, a regulatory limit, is of interest. In such circumstances, the predictive scaled sen-
stivity can be calculated as:

pssj = (dz’l/dbj) (bj/100) (100/a’l) (13)

dssij bj∂
∂y’i bj

100
---------=
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The resulting statistic is the change in the prediction caused by a one-percent change in the param-
eter value, expressed as a percentage of al. The value used for al could be the regulatory limit or 

another number that was relevant to a given situation.

Prediction scaled sensitivities are not calculated by UCODE or MODFLOWP, but can eas-
ily be calculated from one-percent sensitivities calculated for predictions. For UCODE, this is ac-
complished using PHASE=44; for MODFLOWP this is achieved by following the directions for 
the post-processing program YCINT (Hill, 1994). 

In some circumstances the prediction on interest is the difference between two simulations. 
For example, in ground-water problems, the prediction of interest is often the drawdown or change 
in flow to a stream caused by pumpage. These were termed differences by Hill (1994), and 
UCODE and MODFLOWP are designed to calculate sensitivities related to differences. For 
UCODE, this is accomplished using PHASE=45; for MODFLOWP, this is achieved as described 
for YCINT in Hill (1994).

There are two points that need to be considered when calculating prediction scaled senstiv-
ities. First, generally it is important to calculate prediction scaled sensitivities for the parameters 
which were not estimated by regression during model calibration well as the paramters that were 
estimated by regression. Parameters that could not be estimated by regression because of insensi-
tivity, as indicated by composite scaled senstivities, can be important to preditions, and prediction 
scaled senstivities are likely to display that importance.

Second, often it is important to calculate the prediction scaled sensitivities for other sets of 
parameter values besides the optimal parameter values. This tests the robustness of the conclusions 
drawn from the prediction scaled sensitivities with respect to model nonlinearity.

Statistical Measures of Overall Model Fit

Model fit is evaluated by considering the magnitude of the weighted and unweighted resid-
uals (defined after eq. 1) and their distribution both statistically and relative to independent variable 
values such as location and time. The first step generally is searching the table of residuals and 
weighted residuals printed by UCODE or MODFLOWP for the largest (in absolute value) residu-
als and weighted residuals. In initial model runs, these largest residuals and weighted residuals can 
indicate gross errors in the model, the data, or how the observed quantity is simulated, and(or) the 
weighting.  In subsequent model runs, after the gross errors have been corrected, the following sta-
tistics become increasingly important.

Objective-Function Values
The value of the weighted least-squares objective function often is used informally to indi-
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cate model fit. It is rarely used for more formal comparisons because its value nearly always de-
creases as more parameters are added, and the negative aspect of adding parameters is not 
reflected. The negative aspect of adding parameter values is that as the data available for the esti-
mation get spread over more and more parameter values the certainty with which the parameter 
values are estimated decreases. The measures presented below more effectively account for this 
circumstance.

Calculated Error Variance and Standard Error
A commonly used indicator of the overall magnitude of the weighted residuals is the cal-

culated error variance, , which equals:

(14)

where  is the weighted least-squares objective function value of equation 1 or 2 and the other 

variables are defined after equation 1. The square root of the calculated error variance, s, is called 
the standard error of the regression and also is used to indicate model fit. Smaller values of both 
the calculated error variance and the standard error indicate a closer fit to the observations, and 
smaller values are preferred as long as the weighted residuals do not indicate model error (see be-
low).

If the fit achieved by regression is consistent with the data accuracy as reflected in the 
weighting, the expected value of both the calculated error variance and the standard error is 1.0. 
This can be proven by substituting equation 2 into equation 4 and taking the expected value. For 
non-statisticians, it may be more convincing to perform a similar calculation using generated ran-
dom numbers instead of residuals. Assuming a diagonal weight matrix, this can be accomplished 
using any software package that can generate random numbers and perform basic calculations. 
Simply do the following:  (1) Generate n random numbers using any distribution (such as normal, 
uniform, and so on).  These are equivalent to the residuals of equation 1 or 2. (2) Square each ran-
dom number.  (3) Divide each squared number by the variance of the distribution used. If weights 
are defined to be one divided by the variances, these numbers are equivalent to squared weighted 
residuals.  (4) Sum the numbers from (3) and divide by n.  (5) Compare this value to 1.0. As n in-
creases, the value should approach 1.0.

 Significant deviations of the calculated error variance or the standard error from 1.0 indi-
cate that the fit is inconsistent with the weighting. For the calculated error variance, significant de-
viations from 1.0 are indicated if the value 1.0 falls outside a confidence interval constructed using 
the calculated variance. The confidence interval limits can be calculated as (Ott, 1993, p.332 ): 

s
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 ; (15)

where,
n is the degrees of freedom, here equal to ND+NPR-NP (See equation 1 for definitions); 

χu
2 is the upper tail value of a chi-square distribution with n degrees of freedom, with the area to 

the right equal to one-half the significance level of the confidence interval (the signifi-
cance level is 0.05 for a 95-percent interval);

 χL
2 is the lower tail value of a chi-square distribution with n degrees of freedom with the area to 

the left equal to one-half the significance level. 

The calculated standard error can be evaluated similarly by taking the square root of the limits of 

equation 5. Equivalently, the test can be conducted using a  χ2 test statistic, as presented by Ott 
(1993, p.234).

Values of the calculated error variance and the standard error are typically greater than 1.0 
in practice, reflecting the presence of model error as well as the measurement error typically rep-
resented in the weighting, or larger than expected measurement error (see Guideline 8).  

 When the weight matrix is defined as suggested in Guideline 4, the calculated error vari-
ance and standard error are dimensionless.The dimensionless standard error is not a very intuitively 
informative measure of goodness of fit. A more intuitive measure is the product of the calculated 
standard error and the statistics used to calculate the weights (generally standard deviations and co-
efficients of variation; see the discussion for guideline 4). Such products are called fitted standard 
deviations and fitted coefficients of variation by Hill and others (1998) and in general can be called 
fitted error statistics. These statistics clearly represent model fit both to modelers and resource 
managers. For example, if a standard deviation of 0.3 m is used to calculate the weights for most 
of the hydraulic-head observations and the calculated standard error is 3.0, the fitted standard error 
of 0.9 m accurately represents the overall fit achieved for these hydraulic heads. If a coefficient of 
variation of 0.25 (25 percent) is used to calculate weights for a set of springflow observations and 
the calculated standard error is 2.0, the fitted coefficient of variation of 0.50 (50 percent) accurately 
represents the overall fit achieved to these springflows. Generally this approach applies only if the 
fitted error statistic summarizes the fit to a fairly large number of observations. Application to a 
single observation can produce misleading results.

The AIC and BIC Statistics
The calculated error variance and standard error are sometimes criticized for not sufficient-

ly representing the drawbacks associated with increasing the number of estimated parameters. The 
AIC and BIC statistics were developed in the time-series literature to address this criticism (Brock-
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well & Davis, 1989). To reflect the fact that adding too many parameters produces unreliable pa-
rameter estimates, the following two statistics equal the sum of the maximum-likelihood objective 
function (eq. 3) evaluated at the optimal parameter values, S’(b’), and terms that become large as 
more parameters are added. Although these statistics were developed for time-series problems, 
Carrera and Neuman (1986) successfully used them to discriminate between different parameter-
izations of a test case of ground-water flow. The statistics are stated below; see the cited references 
for their derivations and additional discussion. 

The statistic AIC was developed by Akaike (1974) and equals:

AIC(b’) = S’(b’) + 2 × NP. (16)

The statistic BIC also was developed by Akaike (1978) as a response to concern that AIC some-
times promoted use of more parameters than was required.   The version of this statistic used by 
Carrera and Neuman (1986) is:

BIC(b’) = S’(b’) + NP × ln(ND+NPR). (17)

For both statistics, smaller values indicate a more accurate model. If the statistics for a mod-
el with fewer parameters are only slightly larger than the statistics of another model, however, it 
may be better to select the model with fewer parameters, unless the investigator has other informa-
tion indicating the validity of the more complicated model.

Graphical Analysis of Model Fit and Related Statistics

The assumed model can be analyzed to determine if the simulated dependent-variable val-
ues indicate a valid regression using the methods described below. The methods were suggested 
for ground-water inverse modeling by Cooley and Naff (1990), using the work of Draper and Smith 
(1981), and are discussed in Hill (1992, 1994). Data files to support these analyses are produced 
by UCODE and MODFLOWP. Examples of many of the graphs described are presented later in 
this report in the context of the guideline it is likely to support, as listed in the section “Example 
Figures.” 

Weighted Residuals Versus Weighted Simulated Values and Minimum, Maximum, 
and Average Weighted Residuals

 It can be shown (Draper and Smith, 1981) that, in most situations, weighted residuals and 
weighted simulated values should be independent, so it is informative to consider graphs that as-
sess the independence of these two variables. Ideally, weighted residuals are scattered evenly about 
0.0, and their size is not related to the simulated values. In ground-water problems, for example, 
ideally the weighted residuals are not consistently larger in areas of high hydraulic head than in 
areas of low hydraulic head.  Examples of such graphs, a discussion of the theory behind them, and 
some situations in which adjustments are needed because the two data sets are not independent are 
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presented in Hill (1994).

Statistics printed by UCODE and MODFLOWP that summarize the distribution of the 
weighted residuals are the minimum, maximum, and average weighted residuals, and the observa-
tions for which the minimum and maximum weighted residuals occur. The minimum and maxi-
mum weighted residuals display the range of weighted residuals at a glance. In practice, especially 
in the initial stages of calibration, the minimum and maximum weighted residuals often identify 
observations that are misrepresented in the simulation, suffer from incorrect data interpretation, or  
simply have not been entered incorrectly. The average weighted residual is a simple arithmetic av-
erage of the weighted residuals and ideally equals zero. In linear regression the average always 
equals zero for the optimized parameter values; in nonlinear regression the value of the average 
weighted residual generally approaches zero as calibration proceeds.

Weighted Observations Versus Weighted Simulated Values and Correlation Coeffi-
cient R

Ideally, simulated values are close to observations, so that weighted simulated values are 
close to weighted observations. When weighted observations are plotted against weighted simulat-
ed values, the hope is that the points fall close to a line with slope equal to 1.0 and an intercept of 
zero. A summary statistic that reflects how well this is accomplished is the correlation coefficient 
between the weighted observations and the weighted simulated values. The correlation coefficient, 
R, is calculated as (Cooley and Naff, 1990, p. l66):

R =   (18) 

where , , and  were defined for equation 2. my and my’ are vectors with all ND elements equal 

to:

   

        
(19)

           (20)

 Thus,  is simply a vector with each component equal to the average of the weighted dependent-
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variable observations, and  is an analogous vector using the weighted simulated values. Gen-

erally, R needs to be greater than 0.90. When there is prior information, R also is calculated with  

, , and  augmented with prior information as in Appendix A, in which case ND+NPR replaces 

ND when calculating  and . 

Graphs Using Independent Variables and the Runs Statistic
Evaluating weighted and unweighted residuals and weighted and unweighted observations 

and simulated values as related to the independent variables of a problem, such as space and time, 
is crucial. Ideally, weighted residuals plotted on maps or time graphs such as hydrographs show no 
discernible patterns and appear random. Distinct patterns can indicate significant model error that 
may make simulated predictions incorrect and misleading.  Distinct patterns often are present, 
however, especially in time graphs. 

A summary statistic that checks for the randomness of weighted residuals is the runs test 
(Cooley, 1979; Draper and Smith, 1981, p. 157-162). A sequence of residuals of the same sign is 
called a run, and the number of runs is counted and the value assigned to the variable u. For exam-
ple, for the sequence of numbers -5, -2, 4, 3, 6, -4, 2, -3, -9, has the five runs (-5,-2), (4,3,6), (-4), 
(2), (-3, -9), so that u=5. Using the total number of positive residuals (n1), and the total number of 

negative residuals (n2), u can be defined as a random variable that depends on the order of the neg-

ative and positive values. It can be shown that if n1>10 and n2>10, u is normally distributed with 

mean, µ, and variance, σ2, equal to:
µ = [2n1n2/(n1+n2)]+1.0, (21)

σ2 = [2n1 n2 (2n1n2-n1-n2)]/[(n1+n2)2(n1+n2-1)]. (22)

The actual number of runs in a data set is compared with the expected value using test statistics. 
The test statistic for too few runs equals 

zf = (u-µ+0.5)/σ; (23)

the test statistic for too many runs equals
zm = (u-µ-0.5)/σ. (24)

Critical values for zf and zm are printed by UCODE and MODFLOWP. Otherwise, critical values 

can be determined from a normal probability table available in most statistics texts. 

In UCODE and MODFLOWP, the weighted residuals are analyzed using the sequence in 
which the observations are listed in the input file. The runs test is included because it takes the order 
of the residuals into account, which is ignored in all the other summary statistics. If observations 
are grouped by location in transient simulations, too few runs commonly indicate positive serial 
correlation between residuals at individual locations.

my’i
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Normal Probability Graphs and Correlation Coefficient R2
N

For a valid regression, the errors in the observations and the prior information used in the 
regression need to be random and the weighted errors need to be uncorrelated (Draper and Smith, 
1981). In addition, inferential statistics such as confidence intervals generally require that the ob-
servation errors be normally distributed (Helsel and Hirsch, 1992). The actual errors are unknown, 
so the weighted residuals are analyzed.  If the model accurately represents the actual system and 
the observation errors are random and the weighted errors are independent, the weighted residuals 
are expected to either be random, independent, and normally distributed, or have predictable cor-
relations.  The first step is to determine whether the weighted residuals are independent and nor-
mally distributed. If they are not, further analysis is needed to determine if the violations are 
consistent with the expected correlations.

The test for independent, normal weighted residuals is conducted using normal probability 
graphs of weighted residuals. Such graphs can be constructed as discussed by Hill (1994), using 
files created by UCODE or MODFLOWP.  The files are designed so that the graphs can be con-
structed using commonly available x-y plotting software using arithmetic axes. If the weighted re-
siduals are independent and normally distributed, they will fall on an approximately straight line 

in the normal probability graph. The associated summary statistic is R2
N the correlation coefficient 

between the weighted residuals ordered from smallest to largest and the order statistics from a 
N(0,1) probability distribution function (Brockwell and Davis, 1987, p. 304). This statistic tests for 
independent, normally distributed weighted residuals and was chosen instead of other statistics, 
such as chi-squared and Kolomogorov-Smirnov, because it is more powerful for commonly used 
sample sizes (Shapiro and Francia, 1972). The correlation coefficient is calculated as:

R2
N =  ,                 (25)

where all vectors are of length ND for R2
N evaluated only for the observation weighted residuals, 

and length ND+NPR for R2
N evaluated for the observation and prior information weighted resid-

uals; m is a vector with all components equal to the average of the weighted residuals, eo is a vector 

of weighted residuals ordered from smallest to largest, and τ is a vector with the ith element equal 
to the ordinate value of a N(0,1) probability distribution function for a cumulative probability equal 
to ui  = (i-0.5)/ND. A normal probability table (as in Cooley and Naff, 1990, p. 44, or any standard 

statistics text) can be used to determine that, for example, if u = 0.853l, then τi  = 1.05. UCODE 

and MODFLOWP print the ordered weighted residuals of eo and  R2
N.

If R2
N is too much less than its ideal value of 1.0, the weighted residuals are not likely to 
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be independent and normally distributed. The critical values for R2
N for significance levels 0.05 

and 0.10 are shown in Appendix D and the relevant critical values are printed by MODFLOWP 

and UCODE with R2
N.

Determining Acceptable Deviations from Independent Normal Weighted Residuals
Weighted residuals may fail the tests described above because there are too few weighted 

residuals or because of the fitting process of the regression, and not because the model is inade-
quate. The fitting process can produce correlations between residuals that, for example, result in a 
normal probability graph of weighted residuals that is not linear. This can be tested by generating 
values that conform to the expected violations, as described by Cooley and Naff (1990, p. 176). 
The steps involved in the test are as follows. 
1. Sets of normally distributed random numbers are generated with and without the regression-

induced correlations. 
2. Normal probability graphs of the weighted residuals are compared with graphs of the indepen-

dent normally distributed random numbers (called d’s by Cooley and Naff, 1990). If similar 
deviations from a straight line are apparent in these graphs, it can be concluded that the non-
linear shape of the weighted residuals graphs could result from too few weighted residuals.

3. Normal probability graphs of the weighted residuals are compared with graphs of the corre-
lated normally distributed numbers (called g’s by Cooley and Naff, 1990). If similar devia-
tions from a straight line are apparent in these graphs, it can be concluded that the nonlinear 
shape of the weighted residuals graphs could result from the regression-induced correlation.

A computer program for generating the random numbers was presented by Cooley and Naff 
(1990), and was slightly modified for use with MODFLOWP, as discussed by Hill (1992); the 
computer program is called RESANP. An output file is produced by MODFLOWP that can be used 
as the input file to RESANP; UCODE includes RESANP as a subroutine, and files with the random 
numbers are produced when input variables are set appropriately.

Parameter Statistics

Although composite scaled sensitivities are good measures of the information the data con-
tain for a single parameter, they do not reflect that there are many parameters being estimated si-
multaneously, and they do not reflect the actual precision of the parameter estimates. The following 
statistics fill these roles. In addition, one of them, the correlation coefficient, is independent of 
model fit, an attribute it shares with the composite scaled sensitivities. This attribute is used exten-
sively in Guideline 3 later in this report.

Variances and Covariances
The reliability and correlation of parameter estimates can be analyzed by using the vari-

ance-covariance matrix, V(b'), for the final estimated parameters, b' (Bard, 1974, p. 59), calculated 
as:

V(b') = s2(XTω X)-1 (26)
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where V(b’) is an NP by NP matrix; s2, the calculated error variance, is calculated using equation 
14, and X (which is calculated using the optimal parameters b’) and ω are augmented to include 
sensitivities and weights for prior information on the parameters (Appendix A). The diagonal ele-
ments of matrix V(b’) equal the parameter variances; the off-diagonal elements equal the parameter 
covariances. For a problem with three estimated parameters, the matrix would appear as:

where var(1) is the variance of parameter 1, cov(1,2) is the covariance between parameters 1 and 
2, and so on. The variance-covariance matrix is always symmetric, so that cov(1,2)=cov(2,1), and 
so on. The utility of equation 26 depends on the model being nearly linear in the vicinity of b’ and 
on the appropriate definition of the weight matrix. The source of these restrictions is presented in 
the proofs of Appendix C. 

While equation 26 equals the variance-covariance of the parameter estimates only if eval-
uated for the optimal parameter values, the calculation can be done for any set of parameter values, 
and some of the statistics calculated using this matrix are very useful for diagnosing problems with 
the regression (Anderman and others, 1996; Poeter and Hill, 1997; and Hill and others, 1998). To 
be concise in the present work, the matrix of equation 26 and statistics derived from it will be re-
ferred to by the same names used when evaluated at the optimal parameter values. In practice, it is 
important to indicate whether the parameter values used for the calculation are optimal or not.  Sta-
tistics derived from the variance-covariance matrix on the parameters that are printed by UCODE 
and MODFLOWP are described in the following sections. 

Two variations on the variance-covariance matrix of equation 26 are important. First, equa-
tion 26 usually is evaluated using the parameters estimated by regression, and the resulting param-
eter variance-covariance matrix is the one printed at the end of the regression. In many situations, 
however, some parameters are excluded from the regression because of insensitivity and(or) non-
uniqueness, as determined using the sensitivity measures discussed above and the correlation co-
efficients presented below. These parameters are, therefore, excluded from calculation of the 
parameter variance-covariance matrix. It is important, however, to periodically calculate sensitiv-
ities and the variance-covariance matrix for all parameters to reevaluate insensitivity and nonu-
niqueness, and to evaluate the parameter from the perspective of predictions. This can be 
accomplished easily using UCODE and MODFLOWP by activating unestimated parameters and 
adding prior information on these parameters if available. Then, sensitivities can be calculated 
once, the sensitivity matrix (X) augmented to include senstivities for the unestimated parameters, 
and equation 26 calculated using the augmented sensitivity matrix. This is accomplished by replac-
ing the starting parameter values with the final parameter values for both UCODE and MOD-

var(1) cov(1,2) cov(1,3)  

cov(2,1) var(2) cov(2,3)             (27)

cov(3,1) cov(3,2) var(3)  
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FLOWP, and by using PHASE 22 of UCODE or by setting IPAR=1,  TOL=1x106 and 

DMAX=1x10-6 in MODFLOWP. In this work, this variation is called the parameter variance-co-
variance matrix for all parameters.

A second variation of the variance-covariance matrix of equation 26 can be used to deter-
mine if parameters that are highly correlated given the observations used in the regression are also 
highly correlated relative to the predictions of interest. This is important to determining whether 
parameters are estimated adequately given the desired predictions, as discussed in Guideline 14. 
This variation of equation 26 requires that the sensitivity and weight matrices be augmented to in-
clude predictions. This change can be implemented easily when using UCODE or MODFLOWP 
by adding the predictions to the list of observations using the method described above for the first 
variation and the suggestions discussed in the following paragraph. In this work, this second vari-
ation is called the parameter variance-covariance matrix with predictions.

The value specified for the prediction as the ‘observed value’ does not affect the calculated 
prediction correlation coefficients, but the weight does. It is possible to establish a value for the 
weight based on three logical arguments. First, the weight can be estimated based on expected mea-
surement error, as was done for observations (see guideline 4). Second, the weight can be estimated 
using a statistic that reflects an acceptable range of uncertainty in the prediction (This is more con-
sistent with the scaling of the CTB statistic of Sun and Yeh, 1990).  Third, it may be useful to de-
crease the value of the statistic specified for the weight so that the value of the weight and the 
dominance of the predictive quantity is increased. The third option ensures that the predictions are 
not overwhelmed by the other data. To ensure that the result is correct for all of the predictions, 
predictions can be included individually or in groups, depending on the problem.

Standard Deviations, Linear Confidence Intervals, and Coefficients of Variation
Parameter standard deviations equal the square root of the parameter variances. Parameter 

standard deviations are perhaps most useful when used to calculate two other statistics: confidence 
intervals for parameter values and coefficients of variation. Linear confidence intervals calculated 
as described by Hill (1994) and references cited therein require trivial amounts of execution time 
and are calculated and printed by UCODE and MODFLOWP. The more accurate nonlinear confi-
dence intervals of Vecchia and Cooley (1987) and Christensen and Cooley (1996) discussed below 
in section “Nonlinear Confidence and Prediction Intervals” require substantial execution time and 
are not calculated by the current versions of UCODE or MODFLOWP.

A linear confidence interval for each parameter  is calculated as

(28)

βj

bj t n 1.0
α
2
---–, 

  sbj
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where

 is the Student-t statistic for n degrees of freedom and a significance level of α; and

 is the standard deviation of the jth parameter. 

Confidence intervals are referred to in a way that can be confusing, and that is derived from their 
definition. Technically, a confidence interval is a range that has a stated probability of containing 
the true value. As such, confidence intervals are referred to using the true, unknown value that is 

being estimated. Thus, equation 28 is said to be the confidence interval for , the true, unknown 

jth parameter value, and the width of the confidence interval can be thought of as a measure of the 
likely precision of the estimate. Narrow intervals indicate greater precision. If the model correctly 
represents the system, the interval also can be thought of as a measure of the likely accuracy of the 
estimate. This was discussed in more detail by Hill (1994).

The derivation of equation 28 requires an assumption that is not needed to perform the re-
gression -- that is, the assumption that the true errors and, therefore, for a linear problem, the pa-
rameter estimates, be normally distributed. For further discussion, see the section “Normal 

Probability Graphs and the Correlation Coefficient R2
N.”

When plotted on graphs with the related estimated values, linear confidence intervals pro-
vide a vivid graphical image of the precision with which parameters are estimated using the data 
included as observations in the regression, given the constructed model. 

The coefficient of variation for each parameter equals the standard deviation divided by the 
parameter value and provides a dimensionless number with which the relative accuracy of different 
parameter estimates can be compared.

For log-transformed parameters, confidence intervals and coefficients of variation of the 
transformed parameters can be difficult to interpret. In UCODE and MODFLOWP the confidence 
intervals are untransformed by taking the exponential of the confidence interval limits, and these 
are printed. The coefficients of variation are untransformed by untransforming the parameter vari-

ance, (Slogb)2  as:

(29)

where the exponentials and logs are in base 10, b is the native parameter, and logb is the estimated 
log-transformed parameter. The coefficient of variation of the native parameter is calculated by di-
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viding the square root of its variance by b. It should be noted that the linear confidence intervals 
for the true, unknown native parameters are symmetric when plotted on a log scale, but are not 
symmetric when plotted on an arithmetic scale.

Correlation Coefficients
Correlation coefficients are calculated as the covariance between two parameters divided 

by the product of their standard deviations. Using the notation of equation (27), the correlation be-
tween the ith and jth parameter is calculated as:

(30)

Correlation coefficients range in value from -1.0 to 1.0, with values close to -1.0 and 1.0 indicative 
of parameter values that cannot be uniquely estimated with the observations used in the regression. 
Poeter and Hill (1997) provide a good description of correlation coefficients calculated for a simple 
test case; Anderman and others (1996) show how they can be used to evaluate the worth of different 
kinds of observations. Correlation coefficients are typically displayed as a matrix, such as:

1.0   0.96  0.05
0.96  1.0  0.46     (31)
0.05  0.46  1.0

Correlation coefficient matrices are always symmetric and the diagonal elements always equal 1.0. 
Correlation coefficients can be calculated using any of the variations of the parameter variance-
covariance matrix discussed above. Correlation coefficients calculated using the parameter vari-
ance-covariance matrix with all parameters are called correlation coefficients for all parameters; 
correlation coefficients calculated using the parameter varience-covariance matrix with predictions 
are called prediction correlation coefficients.

Influence Statistics

While dimensionless scaled sensitivities indicate the importance of an observation to the 
estimation of a parameter, the actual effect of the observation in the regression also depends on cal-
culated residuals. The Cook’s D and DFBETA influence statistics incorporate this effect. The 
Cook’s D statistics can be calculated for each observation as described by Cook and Weisberg 
(1982) and Helsel and Hirsch (1992). DFBETAs are calculated for each parameter j and each ob-
servation i .

Anderman (1996) and Yager (in press) show how the DFBETA influence statistic can be 

cor i j,( ) cov i j,( )

var i( )1 2⁄
var j( )1 2⁄

----------------------------------------------------=
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used to identify the interaction between the observations and estimated parameter values in 
ground-water problems. 

Prediction Uncertainty

The uncertainty with which predictions are simulated can be approximated using confi-
dence and prediction intervals. Confidence intervals are for the true, unknown predictions, which 
are not random variables, and result from the uncertainty with which the parameters are estimated, 
as represented by the variance-covariance matrix on the parameters (eq. 26). Prediction intervals 
also account for random measurement error in the quantity for which the interval is constructed, 
and are needed to construct an interval for an anticipated measurement of the prediction. Confi-
dence and prediction intervals are discussed in many texts, such as Seber and Wild (1989) and 
Helsel and Hirsch (1992), as well as by Cooley and Naff (1990) and Hill (1994). 

Linear Confidence and Prediction Intervals
Approximate linear confidence and prediction intervals for predictions can be calculated 

using output files produced by MODFLOWP and computer program YCINT of Hill (1994), or by 
setting the input variables appropriately for UCODE, in which YCINT has been converted to a sub-
routine. Linear confidence intervals are calculated as:

(32)

where z’l is the lth simulated value;

ts (n, 1.0-α/2) is the critical value, and equals the value for which there is an α/2 probability that a 

student-t distributed random variable would be larger;
n is the degrees of freedom, here equal to ND+MPR-NP;
α is the significance level and is commonly 0.05 or 0.10 (5 and 10 percent), and

 is the standard deviation of the prediction, calculated as

  . (33)

The calculated confidence interval is said to have a (1-α) probability of including the true value of 
the predicted quantity. Corresponding to the values noted above, 90- and 95-percent confidence in-
tervals are the most common.

Approximate linear prediction intervals are calculated as:
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(34)

where  is the standard error of the regression adjusted for the expected measurement error of the 

prediction (see Hill, 1994, p. 32; Miller, 1981).

Individual confidence intervals calculated using equation 32 are exact for linear models 
with normally distributed residuals, assuming that the model is correct. As these conditions are vi-
olated to a greater degree, the calculated intervals become progressively less accurate, so that the 
actual significance level of the interval can be substantially different than intended. This is of seri-
ous concern for the nonlinear problems considered in this work, as discussed by Donaldson and 
Schnabel (1987). Recent publications in the ground-water literature, however, indicate that in 
many ground-water flow problems linear intervals are accurate enough to be useful (Christensen 
and Cooley, in press). Other types of ground-water problems have not been evaluated. 

The calculation of confidence and prediction intervals can (and often needs to) include 
more parameters than were included in the regressions performed for model calibration, as dis-
cussed above in the section ‘Prediction Scaled Sensitivities’ and under guideline 13.

The individual intervals defined above apply when the uncertainty of only one quantitiy is 
of interest. When more than one quantity is of interest, different intervals are needed, and these are 
called simultaneous intervals. Simultaneous intervals calculated using linear theory are always of 
equal size or larger than equivalent linear individual intervals, reflecting the greater uncertainty in-
volved in trying to define intervals which are likely to include the true value of two or more pre-
dictions at the same time. As more intervals are considered, the intervals tend to become wider. 
The largest intervals are calculated when the number of predictions equals the number of parame-
ters included in the uncertainty analysis. Additional predictions do not increase the size of the si-
multaneous intervals.

Simultaneous intervals are difficult to calculate exactly, but can be approximated using the 
equations listed in Hill (1994), as discussed by Miller (1981). The equations for simultaneous con-
fidence and prediction intervals are of the same form as equations 32 and 34, respectively, and dif-
fer only in the critical values used. If the number of intervals considered is represented by k, the 
interval limits can be calculated using critical values from a Bonferroni-t distribution or from an F 
distribution. The Bonferroni critical value is 

tB(n,1.0-α/2k). (35a)

The F distribution critical value is 

[d x Fα(d,n)]1/2 , (35b)

where d equals k or the number of parameters (NP), whichever is less. Intervals calculated with the 
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F distribution critical value are called Scheffe intervals. Scheffe intervals are labeled either as 
Scheffe d=k or Scheffe d=NP.

Both Bonferroni and Scheffe intervals are approximate, and tend to be large. Thus, for any 
finite value of k, the smaller interval should be used. 

In some cases k is not finite. For example, if a prediction of interest is the largest simulated 
value over a defined area, the predicted quantity can not be specified exactly before the simulation, 
and the number of predictions considered simultaneously needs to be thought of as infinite. In this 
circumstance, the only applicable approximate simultaneous interval is the Scheffe d=NP.

As discussed in the section “Prediction Scaled Sensitivities”, in some circumstances the 
prediction on interest is the difference between two simulations.  Both UCODE and MODFLOWP 
can calculate linear confidence and prediction intervals on differences, as discussed by Hill (1994).

Calculation of linear confidence intervals requires only the sensitivities calculated for the 
optimized parameter values and, therefore, takes very little computer execution time.

Nonlinear Confidence and Prediction Intervals
Accurate evaluation of parameter and prediction uncertainty for nonlinear models requires 

nonlinear confidence and prediction intervals, as discussed by Veccia and Cooley (1987), Cooley 
(1997) and Christensen and Cooley (in press). Calculation of nonlinear confidence intervals re-
quires the equivalent of a full regression for each limit of each interval, so can entail substantial 
additional computer execution time. For many nonlinear problems, a practical approach is to cal-
culate linear confidence and(or) prediction intervals, and then to calculate nonlinear intervals for 
selected predictions. Unfortunately, nonlinear intervals are not calculated with the present versions 
of UCODE and MODFLOWP.

Testing for Linearity

The methods presented in this section are only applicable if the model is sufficiently linear. 
Although the modified Gauss-Newton optimization method and many of the statistical methods 
discussed are useful even for problems which are quite nonlinear, more stringent requirements on 
linearity are needed for the linear confidence and prediction intervals to adequately represent pa-
rameter and prediction uncertainty. The assumption of linearity upon which the linear confidence 
intervals are based can be tested using the modified Beale’s measure (also called Linssen’s mea-
sure) described by Cooley and Naff (1990) and Hill (1994). Although the modified Beale’s mea-
sure indicates nonlinearity of the confidence region of the parameters, and does not directly 
measure nonlinearity of confidence intervals, no better indicator of nonlinearity is available. In-
creasingly problematic situations occur as predictive quantities or situations differ more from cal-
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ibration observations and situations. 

The modified Beale’s measure can be calculated using MODFLOWP and the computer 
program BEALEP of Hill (1994); a slightly modified version of BEALEP can be executed by 
UCODE using PHASE=33. Many practical problems are nonlinear, in which case the linear inter-
vals are inaccurate.

Example Figures

Table 1 lists most of the statistics and graphical analyses discussed in this section of the re-
port, and the figures and guidelines in which they are presented and discussed in the next section. 
Note that the use of these statistics and graphs is not restricted to the suggested application.
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Table 1: Statistics and graphical analyses, related figures, and the guidelines in which the figures 

are presented. 1

1. The statistics and graphs often are useful for other guidelines as well. See Table 2.
2. Unless otherwise indicated.
3. No example is provided in this report.
4. Repeated because of their frequent application for two purposes.
5. No example is provided in this report. See Anderman (1996) and Yager (in press).
6. No example is provided in this report. An example is shown by Christensen and Cooley (in press).

Statistic or graph
(ordered by function) Figure2 Guideline

Sensitivity Analysis Statistics

Dimensionless scaled sensitivities 13, Table 3 11

Composite scaled sensitivity  3, 4, 16, 17, 
Table 3

3, 11, 14

One-percent scaled sensitivity map none 3 11

Parameter correlation coefficients4 5, 6, 16 3, 14

Linear confidence intervals on parameters 10, 14, 16  9, 13, 14

Model Fit Statistics and Graphical Analysis

Fitted error statistics 11 10

Graph of weighted residuals versus weighted simulated values 12 10

Graphs using independent variables 7, 8 8

Runs test 9 8

Normal probability graphs 15 13

Evaluate Estimated Parameter Values

Compare estimated parameter values with reasonable ranges 10 9

Linear confidence intervals on parameters 10, 14, 16  9, 13, 14

Parameter correlation coefficients 5, 6, 16 3, 14

Influence statistics none 5

Evaluate Predictions

Prediction scaled sensitivities 16, 17 14

Linear and nonlinear confidence intervals on predictions none 6  
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GUIDELINES FOR EFFECTIVE MODEL CALIBRATION

A clear, thorough discussion of an entire modeling protocol is presented by Anderson and 
Woessner (1992, p. 4-9). The guidelines presented here fit into that protocol, enhancing the cali-
bration, prediction, and uncertainty analysis phases, and emphasizing the testing of different con-
ceptual models. Preliminary steps of the protocol include identifying the purpose of the model and 
selecting or programming a model with the appropriate capabilities, and the guidelines presented 
in this work assume these have been accomplished.

Ideally, the model is constructed and the data are collected with the purpose of the model 
in mind, with the evolving model used to guide data collection efforts. Formally using the model 
in these effort is complicated because, as noted by Sun (1994, p. 210), there is an inherent difficulty 
associated with the optimal design of experiments for nonlinear problems, i.e., the solution of op-
timal design depends on the values of the unknown parameters.  In addition, in the three-dimen-
sional, transient problems common to many fields, evolution of the conceptual models may be 
significant, and new data may challenge previous conceptual models, as well as change the opti-
mized parameter values. Sun (1994) presents some elegant methods of addressing this problem; 
those presented here tend to be simpler, and, in some circumstances, may serve as preliminary steps 
to a more sophisticated evaluation. 

To ensure that a reasonably accurate model is used to guide data collection, the guidelines 
presented in this work do not suggest using the model to evaluate potential new data or to formally 
consider the desired prediction until Guidelines 12 and 14, respectively. This is not intended to di-
minish the importance of considering these issues throughout data collection and model develop-
ment, but to provide steps by which the available data can be used to develop a model that is as 
accurate as possible for each phase of the analysis. Once a reasonable model is developed, it may 
be used to visit previously considered guidelines. Thus, the guidelines are not intended to be fol-
lowed sequentially once, but may be repeated many times during model calibration.

The guidelines are summarized in table 1 and are explained further in the text. The guide-
lines are presented in the context of ground-water model calibration, but are applicable to other 
fields. Many aspects of the approach have had a long history in a variety of fields. The idea of start-
ing simple and building complexity, emphasized in guideline 1, is discussed by Parker (1994), 
among others. The principle of parsimony and some of the other characteristics have been dis-
cussed or used by Cooley and others (1986), Constable and others (1987), Cooley and Naff (1990) 
and Parker (1994). Most of the graphical analyses of Guideline 8 were suggested for application to 
ground-water problems by Cooley and Naff (1990), as derived from Draper and Smith (1981). The 
approach developed by Hill and others (1998) is close to the approach presented here, and they test 
the approach using a complex synthetic test case.  Simple synthetic test cases are used to demon-
strate many aspects of the approach in Poeter and Hill (1996, 1997).
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. 

Table 1: 

Guideline Description

1. Apply the 
principle of 
parsimony

Start simple and add complexity as warranted by the hydrogeology and the inabil-
ity of the model to reproduce observations.

2. Use a broad 
range of 
information to 
constrain the 
problem 

For example, in ground-water model calibration, use hydrology and hydrogeology 
to identify likely spatial and temporal structure in, for example, areal recharge and 
hydraulic conductivity, and use this structure to limit the number of parameters 
needed to represent the system. Do not add features to the model to attain model fit 
if they contradict other information about the system.

3. Maintain a 
well-posed, 
comprehensive 
regression 
problem

a) Define parameters based upon their need to represent the system, within the 
constraint that the regression remains well-posed. Accomplish this using compos-
ite scaled sensitivities (cssj) and parameter correlation coefficients. 
b) Maintain a comprehensive model in which as many aspects of the system as 
possible are represented by parameters, and as many parameters as possible are 
estimated simultaneously by regression.

4. Include many 
kinds of data as 
observations in 
the regression

Adding different kinds of data generally provides more information about the sys-
tem. In ground-water flow model calibration, it is especially important to provide 
information about flows. Hydraulic heads simply do not contain enough informa-
tion in many circumstances, as indicated by the frequency with which extreme val-
ues of parameter correlation coefficients occur when using only hydraulic heads.

5. Use prior 
information 
carefully

a) Begin with no prior information to determine the information content of the 
observations.
b) Insensitive parameters (parameters with small composite scaled sensitivities) 
can be included in regression using prior information to maintain a well-posed 
problem, but during calibration it often is advantageous to exclude them from the 
regression to reduce execution time. Include these parameters for Guidelines 13 
and 14.
c) For sensitive parameters, do not use prior information to make unrealistic opti-
mized parameter values realistic. 

6. Assign weights 
which reflect 
measurement 
errors

Initially assign weights to equal , where  is the best available 

approximation of the variance of the error of the ith measurement 
(This is for a diagonal weight matrix; see text for full weight matrix.)

7. Encourage 
convergence by 
making the model 
more accurate

Even when composite scaled sensitivities and correlation coefficients indicate that 
the data provide sufficient information to estimate the defined parameters, nonlin-
ear regression may not converge. Working to make the model represent the system 
more accurately obviously is beneficial to model development, and generally 
results in convergence of the nonlinear regression. Use model fit and the sensitivi-
ties to determine what to change.

1 σi
2⁄ σi

2
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From the perspective of stochastic inverse methods, the approach presented here can be 
thought of as a strategy to approximate the mean, or effective, values. Stochastic methods generally 
require that the mean of any spatially distributed quantity, such as hydraulic conductivity, be con-
stant or a simple function. Unfortunately, geologic media often defy these limitations. The method 
presented here can be used to test whether the mean is constant, and, if not, to provide an estimate 
of what could be a very complex spatial distribution, often with sharp contrasts. Once these large-

8. Evaluate model 
fit

Use the methods discussed in the sections "Statistical Measures of Model Fit" and 
"Graphical Analysis of Model Fit and Related Statistics".

9. Evaluate 
optimized 
parameter values

a) Unreasonable estimated parameter values could indicate model error. 
b) Identify parameter values that are mostly determined based on one or a few 
observations using dimensionless scaled sensitivities and influence statistics.
c) Identify highly correlated parameters.

10. Test 
alternative models

Better models have three attributes: better fit, weighted residuals that are more ran-
domly distributed, and more realistic optimal parameter values.

11. Evaluate 
potential new data 

Use dimensionless scaled sensitivities, composite scaled sensitivities, parameter 
correlation coefficients, and one-percent scaled sensitivities. These statistics do 
not depend on model fit or, therefore, the possible new observed values.

12. Evaluate the 
potential for 
additional 
estimated 
parameters

Use composite scaled sensitivities and parameter correlation coefficients to iden-
tify system characteristics for which the observations contain substantial informa-
tion. These system characteristics probably can be represented in more detail using 
additional estimated parameters.

13. Use 
confidence and 
prediction 
intervals to 
indicate parameter 
and prediction 
uncertainty.

a) Calculated intervals generally  indicate the minimum likely uncertainty. 
b)  Include insensitive and correlated parameters, perhaps using prior information, 
or test the effect of excluding them.
c) Start by using the linear confidence intervals, which can be calculated easily.  
d) Test model linearity to determine how accurate these intervals are likely to be. 
e) If needed and as possible, calculate nonlinear intervals (This is not supported in 
the present versions of UCODE and MODFLOWP). 
f) Calculate prediction intervals to compare measured values to simulated results.
g) Calculate simultaneous intervals if multiple values are considered or the value is 
not completely specified before simulation.

14. Formally 
reconsider the 
model calibration 
from the 
perspective of the 
desired 
predictions

Evaluate all parameters and alternative models relative to the desired predictions 
using prediction scaled sensitivities (pssj), confidence intervals, composite scaled 
sensitivities, and parameter correlation coefficients.

Table 1: 

Guideline Description
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scale variations are established, it may be useful to use stochastic methods to assess the influence 
of smaller scale variations. To date, methods of determining large-scale variations, such as those 
described in this work, and methods of charaterizing small-scale variations, such as stochastic 
methods, have been integrated very little, and this is an area for future research.

Guideline 1: Apply the principle of parsimony
Using the principle of parsimony, the model is kept as simple as possible while still ac-

counting for the system processes and characteristics evident in the observations and while respect-
ing other information about the system. In many fields, including ground-water hydrology, the 
known complexities of the systems being simulated often seem overwhelming, and being parsimo-
nious in model development can require substantial restraint. 

It is important to apply the principle of parsimony to various aspects of model construction 
and calibration. For example, it is important to use a mathematical model that is only as complex 
as is needed for the system being considered, or which is designed such that unneeded capabilities 
do not add complexity. It also is important to investigate the processes and characteristics that are 
likely to be most dominant first and add processes or complexity gradually, always testing the im-
portance of the added complexity to the observations available for model calibration and the pre-
dictions of interest. For inverse modeling, it is important to begin calibration estimating very few 
parameters that together represent most of the features of interest and to increase the complexity 
of the parameterization slowly. The remaining guidelines suggest methods for accomplishing this.

Guideline 2: Use a broad range of information to constrain the problem 
 In most fields, there is information about the modeled system that cannot, given present 
methods, be directly included as observations in the regression. Effective use of this information 
can mean the difference between a parsimonious model that represents the system well and a par-
simonious model that produces nonsense. 

For example, if a ground-water model is to have any credibility, it must respect what is 
known about the hydrology and hydrogeology. Using hydrogeologic data to constrain model cali-
bration is practical in many cases. Most ground-water problems consider relatively shallow geo-
logic systems, and there is often substantial geologic data. This is in contrast to many fields of 
geophysics and other Earth sciences in which the depth of the region of interest precludes being 
able to constrain the calibration much with the known geology. Often, it is geologic data that allows 
useful well-posed ground-water inverse models to be developed, as suggested in guideline 3. Hy-
drogeologic data often indicate that sharp contrasts probably occur in the hydraulic-conductivity 
distribution, which need to be represented to simulate the ground-water system and which cannot 
usually be represented well by, for example, most geostatistical methods. A good example of using 
hydrologic and hydrogeologic data in ground-water flow model development of an incredibly com-
plex system using geoscientific information systems (GSIS) is described by D’Agnese and others 
(1996, 1998, and in press). The GSIS approach can be described as a fully three-dimensional GIS 



38

that is able to represent common geologic relationships such as faults and sequential layering. Oth-
er approaches have been suggested by Poeter and McKenna (1995), McKenna and Poeter (1995) 
and Eppstein and Dougherty (1996). This is an area ripe for further development.

There will inevitably be some overlap in the information used to constrain a problem as de-
scribed in this guideline, and information used as prior information on parameters as discussed in 
Guideline 5. For example, the results of hydraulic tests may be used to determine that two hydro-
geologic units have similar hydraulic-conductivity values and probably can be combined to form 
one parameter in the regression, producing what may be an important constraint on the problem. 
Later, the same results may be used to determine a prior information value for the combined or in-
dividual hydrogeologic units.

Guideline 3: Maintain a well-posed, comprehensive regression problem
A well-posed regression problem is one that will converge to an optimal set of parameter 

values given reasonable starting parameter values. Given commonly available data, the require-
ment of maintaining a well-posed regression produces rather simple models with relatively few es-
timated parameters. Often, however, it is this simple level of  model complexity that can be 
supported by the data based on regression methods. Thus, determining the greatest possible level 
of model complexity while maintaining a well-posed regression can be thought of as an objective 
analysis of the information provided by the data. Prior information can be used to support addition-
al complexity (See Guideline 5). Developing simplifications that produce a meaningful model is 
difficult and requires the constraints discussed in Guideline 2. 

Hydrologic and hydrogeologic information, and composite scaled sensitivities and param-
eter correlation coefficients, can be used to define parameters and to decide which parameters to 
estimate using regression. Composite scaled sensitivities and parameter correlation coefficients are 
well-suited for this purpose because they depend only on the sensitivities and are independent of 
the actual values observed. Evaluated for the starting parameter values, they can be used to deter-
mine what sets of parameters are likely to be estimated given a model and a set of observations 
(Anderman and others, 1996), as described in the following paragraphs. 

If some parameters have composite scaled sensitivities that are less than about 0.01 times 
the largest composite scaled sensitivity, it is likely that the regression will have trouble converging. 
Often, it is useful to plot the composite scaled sensitivities as a bar chart, as in D’Agnese and others 
(1996,1998, in press) and Barlebo and others (1996; in press). The bar chart for starting parameter 
values used by D’Agnese and others (1998) shown in figure 3 indicates that the K4 and RCH pa-
rameters are likely to be easy to estimate by regression with this model, while the ANIV1 and ETM 
parameters are not. In general, it appears that the available observations contain substantial infor-
mation about K (hydraulic conductivity) and RCH (areal recharge) parameters, and less informa-
tion about ANIV (vertical anisotropy) and ETM (maximum evapotranspiration) parameters. 
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Composite scaled sensitivities were calculated often during model clibration and were used to de-
termine what new parameters to introduce, and whether previously excluded parameters should be 
included. The composite-scaled sensitivities for the final model are shown in figure 4. Note that 
there are more K (hydraulic conductivity) and RCH (recharge) parameters, and that most of these 
were estimated by regression. This is consistent with the initial evaluation that the data contained 
substantial information for these types of parameters. There is one new type of parameter: GHB, 
which represents the hydraulic conductivity of the head-dependent boundary conditions being used 
to represent ground-water supported springs. None of the GHB parameters were estimated in the 
regression in the final model because they tended to produce a good match solely to the flow of the 
spring or set of springs at which they were applied, and any error in the spring flow measurement 
would be fit by the model through adjustment of the GHB parameters. Instead, their values were 
determined based primarily on hydrogeologic arguments.

Parameter correlation coefficients indicate whether the estimated parameter values are like-
ly to be unique. For the parameters of figures 3 and 4, all correlation coefficients were less than 
0.95, suggesting that uniqueness was not a problem. A situation in which uniqueness was a prob-
lem is presented by Anderman and others (1996), as displayed in figure 5.  Figure 5 shows corre-
lation coefficients calculated for initial parameter values for the same five parameters of the same 
model for three sets of observation data: (1) hydraulic heads only, (2) hydraulic heads and a lake 
seepage value, and (3) hydraulic heads, lake seepage, and an advective-travel observation. Figure 
5 clearly shows that with only hydraulic heads (data set 1), all parameters are completely correlated 
(the absolute values of all correlation coefficients equal 1.0), so that any parameter estimates found 
by the regression are not unique. Adding one lake seepage measurement (data set 2) reduced cor-
relations some, but only the data set including the advective-travel observation (data set 3) was suf-
ficient to uniquely estimate all of the parameters.
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Figure 3:  Composite scaled sensitivities for parameters of the initial Death Valley regional ground-
water flow  system model of D’Agnese and others (1998, in press). K* are hydraulic-
conductivity parameters, ANIV* are vertical anisotropy parameters, RCH is an areal re-
charge parameter, and ETM is a maximum evapotranspiration parameter.

Figure 4:  Composite scaled sensitivities for the parameters of the final calibrated Death Valley re-
gional ground-water system model of D’Agnese and others (in press). K* are hydraulic-
conductivity parameters, ANIV* are vertical anisotropy parameters, RCH is an areal re-
charge parameter, ETM is a maximum evapotranspiration parameter, and GHB* are pa-
rameters related to the conductance of head-dependent boundaries used to represent 
springs. Parameters estimated by regression have black bars; parameters defined but not 
estimated by regression have grey bars.
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Figure 5:  Parameter correlation coefficients for the same five parameters for three data sets from 
the Cape Cod sewage plume model of Anderman and others (1996), evaluated for the 
initial parameter values. Data set 1 includes only hydraulic heads, and all parameters are 
extremely correlated (the absolute value of all correlation coefficients equals 1.0). Data 
set 2 includes hydraulic heads and one flow observation, and many parameter pairs are 
still extremely correlated; data set 3 also contains an advective-travel observation, which 
reduced correlation considerably.

Figure 6:  Correlation of parameters T1 and T2 of figure 1 at specified parameter values, plotted 
on a log10 weighted least-squares objective function surface. T1 and T2 are in square 
meters per day. (from Poeter and Hill, 1997)

Two concerns about using calculated correlation coefficients exist: the effects of model 
nonlinearity and inaccurate calculated senstivities. The first of these also affects composite scaled 
sensitivities. 

The nonlinearity of inverse problems can make composite scaled sensitivities and correla-
tion coefficients quite different for different sets of parameter values. Figure 6 demonstrates this 
for correlation coefficients calculated for the simple test case from figure 1. This figure shows that 
though there is a distinct minimum to this objective function surface, so that the parameters can 

0.5

0.6

0.7

0.8

0.9

1

1        2        3 
Data set

A
bs

ol
ut

e 
va

lu
e 

of
 th

e 
co

rr
el

at
io

n 
co

ef
fi

ci
en

t



42

clearly be estimated uniquely, correlation coefficients close to 1.0 are calculated for some sets of 
parameter values. For most sets of parameter values, however, the values are significantly less that 
1.0, correctly indicating that unique parameter values can be estimated. Thus, in this problem, the 
misleading results can be detected by calculating correlation coefficients for several sets of param-
eter values.

The effects of both nonlinearity and scaling by the parameter value also make composite 
scaled sensitivities different for different sets of parameter values. If the differences that occur for 
a reasonable range of parameter values are too extreme, composite scaled sensitivities are inade-
quate for the purposes they serve in the guidelines. Their utility can be tested by calculating values 
for several sets of parameter values. They have been useful in many ground-water flow and trans-
port problems (Christiansen and others, 1995, Anderman and others, 1996; D’Agnese and other, 
1996, 1988; Barlebo and others, 1996; Poeter and Hill, 1997; Hill and others, 1998). 

The second concern about calculated correlation coefficients is that they can be substantial-
ly affected by sensitivities that are accurate to less than about four or five significant digits (O. Os-
terby, Aarhus University, Denmark, written commun., 1997). This is a more serious issue for 
UCODE, in which the sensitivities are calculated by less accurate difference methods, and can oc-
cur even when the more accurate central difference method is used to calculate sensitivities. It is 
important, therefore, to follow the suggestions provided in the UCODE documentation (Poeter and 
Hill,1998) to enhance sensitivity accuracy. Inaccurate sensitivities are less of a problem for MOD-
FLOWP, which uses the sensitivity-equation method to calculate sensitivities.

UCODE and MODFLOWP calculate and print correlation coefficients and composite 
scaled sensitivities for the final parameter values of any run, whether the regression converges or 
not. Composite scaled sensitivities also can be printed at initial and intermediate parameter-esti-
mation iterations.
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Guideline 4: Include many kinds of data as observations in the regression
 Guideline 4 stresses the importance of using as many kinds of observations as possible. For 
example, in ground-water flow problems, it is important to augment commonly available hydrau-
lic-head observations with flow observations. The latter serve to constrain solutions much more 
than the relatively easy to fit hydraulic heads and, therefore, using observations that reflect the rate 
and(or) direction of ground-water flow tends to promote the development of more accurate models.  
MODFLOWP supports many types of observations relevant to ground-water flow problems, such 
as hydraulic heads, temporal changes in hydraulic head, streamflow gains and losses, and advective 
travel (Hill, 1992; Anderman and Hill, 1997). An advantage of UCODE is that it allows any quan-
tity to be used as an observation for which a simulated equivalent value is printed in any application 
model output file, or for which a simulated equivalent value can be calculated from the values 
printed in any application model output file. A detailed analysis of the importance of different types 
of observations and how to conduct such an analysis is presented by Anderman and others (1996).

In some circumstances, it may appear that guideline 4 could be addressed by using con-
toured values to increase the number of observations. In a ground-water example, Neuman (1982), 
Clifton and Neuman (1982), Neuman and Jacobson (1984), and Carrera and Neuman (1986) used 
kriging to interpolate hydraulic-head measurements to generate hydraulic heads used in the regres-
sion. When kriging is used, the associated kriging variances and variogram can be used to calculate 
the variance-covariance matrix on hydraulic-head observation errors needed to calculate the 
weighting. The advantage of interpolation methods is that more hydraulic-head values are avail-
able for the regression. As shown by Cooley and Sinclair (1976) and noted by Hill (1992), the dis-
advantage of interpolation methods is that the interpolated hydraulic heads are not based on the 
physics of ground-water flow, so that interpolated values generally do not respect the underlying 
processes represented in the model. This problem can be severe if aquifer properties change rapidly 
because the interpolation method would tend to make the ‘observed’ hydraulic-head distribution  
unrealistically smooth. Use of interpolated values in the regression procedure produces correlation 
between the errors, so use of a full weight matrix may be important. These problems are avoided 
if the observations are used directly in the regression.

Guideline 5: Use prior information carefully
Using prior information allows direct measurements of model input values to be included 

in the regression.  Prior information is treated differently than observations in this work because 
relevant observations generally can be measured more accurately than model-input values. Indeed, 
that is the most fundamental characteristic of the problems considered in this work.  If the measure-
ments of the model input values were accurate and applicable to the scale of the model, model cal-
ibration would be unnecessary or less important.  Thus, it is suggested that the generally more 
accurate observations be emphasized more than the relatively less accurate prior information. Prior 
information takes on an important, but less central role in the suggested methodology. For prob-
lems with more accurate prior information, the prior information might be treated more like the ob-
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servation data are treated here.

Initially omitting prior information on parameters from the regression encourages under-
standing of the information directly available from the observations. Two reasons generally would 
motivate the use of prior information. First, if the sensitivity for a parameter is low, as indicated by 
a small composite scaled sensitivity, regression including the parameter often will not converge. 
Two possibilities generally exist:  specify prior information on the parameter or set the parameter 
value so that it is not changed during the regression (which is roughly equivalent to prior informa-
tion with a very large weight). Specifying prior information usually will result in a parameter esti-
mate that is close to the value specified in the prior information, so that the estimate will be equal 
or close to the prior value regardless of which option is chosen. Execution time is less when the 
parameter value is set because this eliminates the need to calculate sensitivities for the parameter, 
so it is suggested that this option be followed for model calibration. This will continue to be the 
best option as long as the parameter remains insensitive, which can be checked during calibration 
by occasionally calculating composite scaled sensitivities for the estimated parameters and the pa-
rameter in question. An exception to this guideline occurs when the user purposely defines more 
parameters than can be directly supported by the data to represent suspected system complexity, 
and this generally requires substantial use of prior information to obtain a well-posed regression 
problem. An example of this use of prior information and its effect on model accuracy is presented 
in a synthetic test case by Hill and others (1998).

The other common reason for using prior information on parameters is when the parameter 
value estimated by the regression is unreasonable. This problem is discussed in the previous sec-
tion of this report titled "Lack of Limits on Estimated Parameter Values." As noted there, the most 
productive response to this problem depends on the amount of information the observations pro-
vide on the parameter in question. If little information is provided, the problem falls into the cate-
gory of insensitive parameters, and the guidelines discussed in the paragraph above apply. If 
substantial information is provided, the unrealistic estimated parameter value is likely to indicate 
problems with the model or the data, as discussed by Anderman and others (1996) and Poeter and 
Hill (1996). To determine whether enough information is provided by the observations such that 
the unrealistic estimated parameter value indicates a problem with the model or the observations, 
the linear confidence interval on the parameter can be considered. If the confidence interval in-
cludes no realistic parameter values, the unrealistic estimate is likely to indicate problems with the 
model or the observations. If the confidence interval includes realistic parameter values, it is not 
clear whether there is a problem with the model or the data. Examples of the first circumstance are 
described by Anderman and others (1996), Poeter and Hill (1996), and Hill and others (1998). An 
example of the latter circumstance is described by Christiansen and others (1995) and Barlebo and 
others (in press) for a problem in which only hydraulic-head observations are used. In that appli-
cation, addition of concentration observations produced more realistic parameter values, indicating 
that the problem was primarily due to inadequate data. UCODE and MODFLOWP prints linear 



45

confidence intervals on the parameter values (eq. 28). 

 Guideline 6: Assign weights that reflect measurement errors
 The weights are an important part of the regression, and assigning appropriate values can 
be confusing. The guideline presented here has a solid statistical basis and provides substantial 
guidance in most circumstances. For regression methods to produce parameter estimates with the 
smallest possible variance, the weighting needs to be proportional to the inverse of the variance-
covariance matrix of the measurement errors (Appendix C). For a diagonal weight matrix, this 
means that the weights need to be proportional to one divided by the variance of the measurement 
errors. This definition of the weights results in two consequences that have substantial intuitive ap-
peal: (a) Relatively accurate measurements are weighted more heavily than relatively inaccurate 
measurements, and (b) although different observations may have different units, weighted quanti-
ties have the same units and can, therefore, be summed in equation 1 or 2. Based on this guideline, 
information independent of the model is used to determine the weights, so that issues related to the 
weights are less likely to obscure model error or problems related to the data. 

For problems with observations of a simgle type and measured with apparently equal error, 
on average, it generally is easiest to set all weights equal to 1.0, as was done for the Theis problem 
of figure 2. In this situation, the calculated error variance has the units of the observations.

 For problems with more than one kind of observation, as well as prior information on the 
parameters, it is more convenient to define the weighting to equal the inverse of the variance-co-
variance matrix of the measurement errors instead of being proportional to it (Hill and others, 
1998). This guideline encourages the user to compare the weights used to what the weights should 
be theoretically. If it is suspected that another weighting is needed to achieve, for example, ran-
domly weighted residuals at optimal parameter values, this can be tested and placed in context rel-
ative to the assumed measurement error statistics. In addition, the assumed statistics of the 
measurement errors can be compared with the fit to the data achieved by the regression to provide 
a check on the weights used, as discussed under guideline 8.

UCODE and MODFLOWP read statistics from which the variances of the observation er-
rors and then the weights are calculated. The statistics can equal the variance, standard deviation, 
or coefficient of variation of the measurement error of the observations or prior information. Val-
ues for these statistics rarely are known in practice. Although assignment of values for the statis-
tics, therefore, is subjective, in most circumstances the estimated parameter values and calculated 
statistics are not very sensitive to moderate changes in the weights used. Several examples of using 
commonly available data to determine weights are described in the following paragraphs. MOD-
FLOWP also allows a full weight matrix, with covariances as well as variances, to be used. The 
following examplesfocus primarily on determining the more commonly used diagonal weighting, 
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but one example of determining covariances is presented.

The statistics used to calculate the weights often can be determined using readily available 
information and a simple statistical framework. For example, in a ground-water problem, consider 
an observation well for which the elevation was determined by an altimeter and is considered to be 
accurate to within 3 ft. To estimate the variance of the measurement error, this statement needs to 
be quantified to, for example, the probability is 95 percent that the true elevation is within 3 ft of 
the measured elevation. If the measurement errors are assumed to be normally distributed, a table 
of the cumulative distribution of a standardized normal distribution (Cooley and Naff, 1990, p. 44, 
or any basic statistical text, such as Davis, 1986) can be used to determine the desired statistics as 
follows. 
1. Use the table to determine that a 95-percent confidence interval for a normally distributed 

variable is constructed as the measured value plus and minus 1.96 times the standard deviation 
of the value. 

2. As applied to the situation here, the 95-percent confidence interval is thought to be plus and 
minus 3 ft, so that 1.96 x  = 3.0 ft, or  = 1.53, where  is the estimated standard devi-

ation.
In UCODE and MODFLOWP, the standard deviation (1.53 ft) can be specified and the variance 

will be calculated, or the variance (2.34 ft2) can be specified. If elevations of wells are obtained 
from U.S. Geological Survey (USGS) topographic maps, the accuracy standards of the USGS can 
be used to quantify errors in elevation. The USGS (1980, p. 6) states that on their topographic 
maps, "...not more than ten percent of the elevations tested shall be in error more than one-half the 
contour interval." If this were thought to be the dominant measurement error, a 90-percent confi-
dence interval would be plus and minus one-half the contour interval. Assuming that the error is 
normally distributed, a 90-percent interval is constructed by adding and subtracting 1.65 times the 
standard deviation of the measurement error. Thus, the standard deviation of the measurement er-
ror can be calculated as one-half the contour interval divided by 1.65, or (contour interval)/(2 x 
1.65). The value of 1.65 was obtained from a normal probability table.

A similar procedure can be used for observations that are a sum or difference between mea-
sured values. For example, consider streamflow measurements between two gaging stations. In 
ground-water modeling, often it is the difference between the two flow measurements that is used 
as an observation in the regression, and these are called streamflow gain or loss observations. Con-

sider a situation in which the upstream and downstream streamflow measurements are 3.0 ft3/s and 

2.5 ft3/s, so that there is a 0.5 ft3/s loss in streamflow between the two measurement sites. Also 
assume that the measurements are each thought to be accurate to within 5 percent (using, for ex-
ample, Carter and Anderson, 1963), and the errors in the two measurements are considered to be 
independent. Stated quantitatively, perhaps the hydrologist is 90 percent certain that the first mea-

surement is within 0.15 ft3/s (5 percent) of the true value, and 95 percent certain that the second 

syi
syi

syi
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measurement is within 0.125 ft3/s (5 percent) of the true value. Assuming that the errors are inde-
pendent and normally distributed, the standard deviation of the first measurement is calculated us-

ing the method described above from 1.65  = 0.15 ft3/s, so  = 0.091. The standard deviation 

of the second measurement is calculated from 1.96 = 0.125 ft3/s, so  = 0.064. The uncer-

tainty of the difference between the two flows needs to be calculated using their variances, which 

can be calculated by squaring the standard deviations to produce = 0.0083 (ft3/s)2 and = 

0.0041 (ft3/s)2. The variance of the loss of 0.5 ft3/s equals  +  = 0.0124 (ft3/s)2. The coef-

ficient of variation (standard deviation, 0.01241/2, divided by the loss, 0.5 ft3/s) for the loss in 
streamflow is, therefore, 0.22, or 22 percent. In UCODE and MODFLOWP, the variance, standard 
deviation, or coefficient of variation could be specified by the user. The choice generally is based 
on convenience.

In some circumstances there is a series of measurements from which differences are calcu-
lated. For example, there may be three streamflow measurements, q1, q2, and q3, along the length 
of a stream with gains or losses produced by subtracting each measurement from the next down-
stream measurement, resulting in two gain/loss observations, q2-q1 and q3-q2. The errors in the 
two differences are not statistically independent because the error in q2 is included in both differ-
ences. Hill (1992) shows that in this circumstance the covariance between the two differences 
equals the negative of the variance of the q2 measurement. This covariance cannot be included in 
UCODE, which is restricted to a diagonal weight matrix that includes only the variances of the 
measurement errors. Christensen and others (in press) extended the results of Hill (1992, p. 43) to 
measurements along branching streams, and S. Christensen extended MODFLOWP to include full 
weight matrices. It was found, however, that inclusion of the off-diagonal covariance terms in the 
weight matrix had negligible effect on the regression or statistical analysis in the problem consid-
ered (S. Christensen, 1997, oral commun.). Ignoring the covariances as is required in UCODE, and 
as is often done in applications of MODFLOWP, is not expected to effect results substantially in 
many circumstances.

The methods presented above also can be used to determine weighting for prior informa-
tion, but there are two additional issues to consider. First, if the weighting is determined using the 
arguments presented above, the prior information fits into the framework of either classical or Bay-
sian statistics, the later being the framework from which the term prior information originates. 
Sometimes, however, larger weights (smaller statistics) are assigned to the prior information to 
achieve a stable regression, in which case the term regularization needs to be used instead of prior 
information (Hill and others, 1998; Backus, 1988). Setting parameter values to constants that are 
not changed by the regression can be thought of as an extreme case of regularization. When regu-
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larization is used, confidence intervals on parameters and predictions may not represent model un-
certainty accurately. Thus, classifying what is called prior information throughout this work as 
either prior information or regularization is very important.

The second issue unique to prior information occurs when the associated parameter is log-
transformed. In this situation, the statistic on the prior information needs to relate to the log of the 
parameter value. The methods discussed above are directly applicable, but an extra step is needed 
because it is easier to establish a range of plausible values for native than for transformed values. 
Thus, if the prior estimate for a hydraulic conductivity is 100 m/d, and the true value is expected 
to fall within a range of 80 to 120 m/d with a certainty of about 95 percent, a 95-percent confidence 
interval for the native value has approximate limits of 80 and 120. Taking the log (base 10) of these 
values produces limits of 1.90 and 2.08, about a prior estimate of 2.0. If it is assumed that the un-
certainty in the hydraulic conductivity can be approximated by a log-normal distribution, the log-
transformed value is normally distributed. Changing the limits 1.90 and 2.08 slightly to form a 
symmetric interval with limits 1.91 and 2.09, the methods described above can be used to deter-
mine that the standard deviation relevant to the log-transformed parameter equals 0.045, and this 
value would need to be used as the statistic. 

It generally is impossible to identify all measurment errors that contribute to an observation 
or prior information value, and the variances, standard deviation, and coefficients of variation cal-
culated by using the methods discussed in this section are clearly approximate. Indeed, a problem 
related to Guideline 6 as described above is what should be included in the so-called "measurement 
errors". While this point can be argued extensively, a definition that has proven to be useful for the 
purpose of determining weighting is that measurement error is error related to any aspect of the 
measurement not accounted for by the model considered. Unambiguous types of measurement er-
rors are errors in the measuring device and the location of the measurement in three-dimensional 
space. Ambiguous contributions include, for example, heads measured in wells that only partially 
penetrate the numerical layer to which they are assigned. This is more ambiguous because the mod-
el could be refined to accommodate this, and it could be debated whether this is model error or mea-
surement error. Despite such ambiguities, the above definition for measurement error works 
relatively well in practice, partly because the regression often is not very sensitive to the weighting 
used, and the definition is sufficient to produce weighting based on common sense that is at least 
approximately correct.

A final useful aspect of defining the weighting as described here was discussed previously 
in the section “Calculated Error Variance and Standard Error.” Stated briefly, if the model fit is con-
sistent with the assigned weighting, the calculated error variance and the standard error are close 
to 1.0. Larger values, which are common in practice, indicate that the model fits the data less well 
than would be accounted for by expected measurement error. Thus, if the standard error is 5.0, it 
can be said that the model fit was, on average, five times worse than was consistent with the pre-
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liminary analysis of measurement error. Possible sources of the additional error are neglected mea-
surement error, which would change the weighting, or model error. Hill and others (1998) show 
that some types of model error contribute to the calculated error variance but do not necessarily 
result in an inaccurate model.

Guideline 7: Encourage convergence by making the model more accurate
Nonlinear regression models of complex systems often do not converge. In general, con-

vergence is improved as the model becomes a better representation of the system that produced the 
observations being matched by the regression, so that the goal of achieving convergence and a val-
id regression and the goal of model calibration generally are identical. Substantial insight about the 
model can be obtained by using the information available from unconverged regressions, such as 
dimensionless and one-percent scaled sensitivities, composite scaled sensitivities, parameter cor-
relation coefficients, weighted and unweighted residuals, and parameter updates calculated by the 
regression. This information can be used to evaluate the parameters, observations, and fit of the 
existing model, and to detect inaccuracies in model construction. 

Possible model modifications resulting from this analysis include estimating fewer param-
eters, modifying the defined parameters, modifying other aspects of model construction, including 
additional data as observations in the regression, and, rarely, changing the weighting used.

Guideline 8: Evaluate model fit
The most basic attribute of nonlinear regression methods is that, given a well-posed prob-

lem, parameter values are calculated that produce the best fit between simulated and observed val-
ues. The model can then be evaluated without wondering whether a different set of parameter 
values would be better. 

Two common problems are strong indicators of model error: (1) the model does a poor job 
of matching observations, and (2) the optimized parameter values are unrealistic and confidence 
intervals on the optimized values do not include reasonable values. The first is discussed here under 
Guideline 8; the second indicator is discussed under Guideline 9. 

The match to observations achieved through the regression can be evaluated using the 
methods described in the sections "Statistical Measures of Model Fit" and "Graphical Analysis of 
Model Fit and Related Statistics." Evaluations using these methods have been presented in a num-
ber of publications, including Cooley and others (1986), Yager (1991, 1993), D’Agnese and others 
(1998), and Hill and others (1998), and example graphs of weighted residuals can be found there.

 Weighted residuals are indicative of model fit but, being dimensionless, can be confusing 
to interpret. Technically, they equal the ratio between the unweighted residual and the statistic used 
to define the weight. So, if the statistic was a standard deviation and the unweighted residual is 
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twice as large as the standard deviation, the value of the weighted residual is 2.0. To more clearly 
present model fit, often it is useful also to include maps of unweighted residuals in reports, as was 
done by D’Agnese and others (1998). Then very large residuals can be pointed out and discussed. 

Two example graphs are presented here. Figure 7 shows observed and simulated 
streamflow gains along the length of a river. Figure 8 shows the related residuals, which are a good 
indication of model fit if the observed gains are all about equally reliable, as is the case in this ex-
ample, but could be misleading if some of the measurements were known to be less accurate. 

Figure 7: Observed and simulated streamflow gains for model CAL3 of Hill and others (1998).

Figure 8: Residuals equal to the observed minus the simulated streamflow gains of figure 7. 

Trying to identify trends (lack of nonrandomness) by visual inspection is not always reli-
able. Often it is useful to evaluate randomness using formal methods to avoid false identification 
of trends and to avoid missing trends that exist. One such method is the runs tests, as discussed in 
the section “Graphs using independent variables and the runs test”. For example, Cooley and others 
(1986), use runs tests to evaluate spatially distributed weighted residuals. UCODE and MOD-
FLOWP perform a runs test on the weighted residuals using the sequence in which the observations 
are listed in the input file. Figure 9 displays the runs statistic information printed by MODFLOWP.
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Figure 9: Runs test output from MODFLOWP for test case 1 of Hill (1992).

If the model fit is unsatisfactory, three possible problems need to be considered. Listed in 
order of the frequency with which they occur, the three problems are: (1) model error, including 
how parameters are defined; (2) data errors such as data entry errors or mistakes in the definition 
of associated simulated values; and (3) errors in the weighting of the observations or prior infor-
mation. It is often difficult to identify the cause of a problem. In some circumstances,  influence 
statistics, such as DFBETAs (Cook and Weisberg, 1982) that indicate the importance of each ob-
servation to the estimation of each parameter can be useful (Anderman and others, 1996; Yager, in 
press). Additional methods described in guideline 10 also can be useful to evaluate individual mod-
els.

As discussed in the section “Calculated Error Variance and Standard Error” and under 
Guideline 6, if the weights reflect the measurement errors as suggested in this work, weighted re-
siduals that are, on average, larger than 1.0 indicate that the model is worse than would be expected 
given anticipated measurement error, and values smaller than 1.0 indicate that the model fits better 
than expected given anticipated measurement error.

If the model fit is unsatisfactory, the situation can be addressed as described at the end of 
Guideline 7.

Guideline 9: Evaluate optimized parameter values 
Evaluate optimized parameter values by comparing the optimized values and their confi-

dence intervals with independent information about the parameter values. The independent infor-

STATISTICS FOR ALL RESIDUALS :
 AVERAGE WEIGHTED RESIDUAL  :  .100E+00
 # RESIDUALS >= 0. :     18
 # RESIDUALS < 0.  :     17
 NUMBER OF RUNS  :   17  IN   35 OBSERVATIONS

 INTERPRETTING THE CALCULATED RUNS STATISTIC VALUE OF     -.339    
 NOTE: THE FOLLOWING APPLIES ONLY IF 
        # RESIDUALS >= 0 . IS GREATER THAN 10 AND 
        # RESIDUALS < 0.   IS GREATER THAN 10
 THE NEGATIVE VALUE MAY INDICATE TOO FEW RUNS:
    IF THE VALUE IS LESS THAN -1.28, THERE IS LESS THAN A 10 PERCENT 

CHANCE THE VALUES ARE RANDOM,
    IF THE VALUE IS LESS THAN -1.645, THERE IS LESS THAN A 5 PERCENT 

CHANCE THE VALUES ARE RANDOM,
    IF THE VALUE IS LESS THAN -1.96, THERE IS LESS THAN A 2.5 PERCENT 

CHANCE THE VALUES ARE RANDOM.
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mation may include ranges of expected values, and (or) a relative ordering of values. This simple 
test can be an unexpectedly powerful indicator of model error, as shown by Poeter and McKenna 
(1995), Poeter and Hill (1996), Anderman and others (1996), and Hill and others (1998).

Using  independent information on the parameters as suggested here is an alternative to us-
ing the information in the context of prior information values, and is discussed in this report in sec-
tion “Lack of Limits on Estimated Parameter Values” and under Guideline 5. As noted there, 
unreasonable optimized parameter values can be disconcerting to modelers, but provide important 
indicators of problems with model construction, the observations, or both. An example of a graph-
ical comparison of estimated hydraulic conductivities and ranges of expected values is shown in 
figure 10. In this example, the reasonable ranges are broad, but a number of conceptual models 
were rejected because optimized parameter values were outside these ranges.  Thus, even in this 
circumstance,  requiring reasonable optimized parameter values produced an important constraint 
to model development. 

Figure 10:  Optimized hydraulic-conductivity values, 95-percent linear confidence intervals, and 
the range of hydraulic-conductivity values derived from field and laboratory data. (from 
D’Agnese and others, 1998)
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 Consideration of confidence intervals on the optimized parameter values is needed to avoid 
concluding that there is a problem with the model when the real problem is insufficient data with 
which to estimate the defined parameters. Linear confidence intervals on unrealistic optimized pa-
rameter values that include or nearly include realistic values suggest that the data are insufficient 
for conclusive evaluation, and the problem producing the unrealistic values is less likely to be mod-
el error. An example of this circumstance is discussed by Barlebo and others (in press). Confidence 
intervals are discussed further in Guideline 9.

Guideline 10: Test alternative models
In most problems, there is more than one possible representation of the system involved, 

and this guideline encourages testing all alternative models. Such testing is a viable alternative 
when inverse modeling is used. Models that are more likely to be accurate tend to have three at-
tributes: better fit, weighted residuals that are more randomly distributed, and more realistic opti-
mal parameter values. These attributes are discussed in the following paragraphs. 

The first attribute is a better match to observed data, as indicated by smaller values of the 
calculated error variance (eq. 14), the standard error of the regression (the square-root of eq. 14), 
fitted error statistics, AIC and BIC statistics (eq. 16 and 17), or the maximum likelihood criteria 
(eq. 3), all of which are printed by UCODE and MODFLOWP. Other statistics, such as Kashyap’s 
measure (Medina and Carrera, 1996), also can be used, and generally can be easily calculated using 
the printed statistics. A graph of fitted standard deviations for hydraulic heads from seven models 
of Hill and others (1998) is shown in figure 11.

Figure 11:  Fitted standard deviations for hydraulic heads for seven models from a controlled ex-
periment in model calibration. (from Hill and others, 1998)

0

0.02

0.04

0.06

0.08

0.1

C
A

L
0

C
A

L
0-

G
1

C
A

L
0+

PR

C
A

L
1

C
A

L
2

C
A

L
3

N
O

 L
A

K
E

Model

F
itt

ed
 s

ta
nd

ar
d 

de
vi

at
io

n,
 

in
 c

en
tim

et
er

s



54

Besides summary statistics, it is important to consider graphs of the observations, simulated 
values, residuals, and weighted residuals, as discussed in Guideline 8.

The second attribute of better models is that weighted residuals (defined after eq. 1and 2) 
are more randomly distributed. This generally is determined using the graphs and related statistics 
discussed in the section "Graphical Analysis of Model Fit and Related Statistics." Graphs of 
weighted residuals against weighted simulated values, adjusted to account for using coefficients of 
variation calculated using the observed values in the weighing as discussed by Hill (1994), are 
shown for two models in figure 12. The weighted residuals from model CAL0 tend to be larger 
than those of CAL3, as indicated by the greater spread about the 0.0 weighted residual line. In this 
example, the weighting changed somewhat, so the spread does not necessarily indicate a closer fit 
between simulated and observed values. Figure 11, however, shows that the CAL3 model does fit 
the hydraulic-head data better than the CAL0 model. The two sets of weighted residuals of figure 
12 are both reasonably random, although the grouping of positive CAL0 residuals in figure 12A 
for weighted simulated values between 15 and 30and the predominantly positive prior information 
weighted residuals for CAL3 may be of concern.

Figure 12: Weighted residuals versus weighted simulated values for models CAL0 and CAL3 of 
Hill and others (1998). 
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The third attribute of better models is that optimum parameter values will tend to be more 
reasonable, both in terms of the estimated values and their values relative to one another. Unreal-
istic optimized parameter values often are disconcerting to users, as mentioned in the section "Lack 
of Limits on Estimated Parameter Values" and under Guideline 9. 

In some cases the model evaluation may indicate that the data are insufficient to identify a 
best model from several possible alternatives, in which case any predictions of interest need to be 
simulated using all reasonable models.

Poeter and McKenna (1995) present an innovative method of using indicator kriging to 
generate possible models that differed in the zonation used for the hydraulic-conductivity field. 
They then estimated hydraulic conductivities using MODFLOWP. The synthetic test case used al-
lowed them to show that the additional analysis provided by nonlinear regression tended to produce 
more accurate transport predictions than could be attained without the use of regression. The addi-
tional analysis included determining the best-fit parameters for each model through regression, and 
then omitting models for which at least one of the following conditions occurred: (1) the best-fit 
parameter values were unrealistic in that obviously coarser deposits had lower hydraulic conduc-
tivities than finer grained deposits, (2) the best-fit parameter values were substantially different 
than expected, (3) the model fit was significantly worse than for other models, or (4) the regression 
did not converge. The dramatic improvement in the predictions produced by models screened using 
these criteria indicated that their application is likely to be useful for identifying more accurate 
models.

Guideline11: Evaluate potential new data
Potential new data can be evaluated in a number of ways using the methods discussed in 

this work. Here, dimensionless and one-percent scaled sensitivities and one-percent sensitivity 
maps are discussed as tools for evaluating potential new data. These statistics depend only on sen-
sitivities and not on measured values. Thus, the type, location, and weighting of potential new data 
are evaluated. 

The analysis is conducted by adding the potential data to the observation data sets of 
UCODE or MODFLOWP as if the data had already been collected. Specification of the statistic 
for the weighting can be used to represent the anticipated accuracy of the measurement. Any num-
ber can be specified for the observations because they do not affect the statistics being considered.

Anderman and others (1996) use composite scaled sensitivities and correlation coefficients 
(see figure 5 of this report) calculated for initial parameter values to evaluate the contribution to a 
ground-water flow model calibration of three types of data: hydraulic heads, an estimate of lake-
aquifer interaction, and subsurface transport as represented by advective travel derived from con-
centration measurements. Although, in this case, the data had already been collected, it is proposed 
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both here and by Anderman and others (1996) that such an analysis is useful before data collection. 

The example of Anderman and others (1996) demonstrates how model nonlinearity can 
produce misleading results. For the initial parameter values, the advective-transport path enters a 
lake near the source instead continuing on in the ground-water system, as is more probable given 
the concentration data. The short advective-travel path results in an underestimate of the impor-
tance of these data when evaluated using the composite scaled sensitivities and correlation coeffi-
cients calculated for the initial parameter values. Such model nonlinearity is common, and often it 
is useful to calculate the statistics for several combinations of parameter values to evaluate possible 
future data collection activities.

Dimensionless scaled sensitivities can be calculated for any potential observation, and they 
can be used to compare the likely importance of individual proposed data to the estimation of all 
of the parameters. Table 3 shows selected dimensionless scaled sensitivities from test case 1 of Hill 
(1992). Dimensionless scaled sensitivities that are larger in absolute value indicate greater likely 
importance. Here it can be seen that different observations are likely to be important to the estima-
tion of different parameters. In the simple steady-state ground-water flow system for which these 
sensitivities are calculated, the dimensionless scaled sensitivities can be explained easily. For ex-
ample, consider observation WELL1, which is a hydraulic head measured just beneath the river, 
which forms the only outflow boundary. Simulated hydraulic head at this location is dominated by 
the elevation of the water in the river, the characteristics of the riverbed, and the amount of water 
leaving the system. K1 and K2 are hydraulic conductivity parameters that apply along the entire 
length of the river and do not influence the spatial distribution of outflow to the river at steady-
state, so that they do not affect simulated hydraulic head at WELL1. KRB is the hydraulic condu-
citivity of the riverbed, which does influence the simulated hydraulic head beneath the river, re-
sulting in the reltivly large scaled sensitivity for observation WELL1. The composite scaled 
senstivities indicate that the four observations listed provide much more information for parameter 
K1 than for KRB, and an intermediate amount of information for K2. 

Dimensionless scaled sensitivities also can be plotted against independent variables such 
as time and location. The graph of dimensionless scaled sensitivities plotted against time shown in  
figure 13 indicates the relative importance of hydraulichead measurements before and during 
pumpage. Additional uses of scaled sensitivities are discussed under Guideline 14 and in the sec-
tion “Statistics for Sensitivity Analysis”.
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Dimensionless scaled sensitivities also can be plotted against independent variables such 
as time and location. The graph of dimensionless scaled sensitivities plotted against time shown in  
figure 13 indicates the relative importance of hydraulichead measurements before and during 
pumpage. Additional uses of scaled sensitivities are discussed under Guideline 14 and in the sec-
tion “Statistics for Sensitivity Analysis”.

Figure 13: Dimensionless scaled sensitivites plotted against time. The values are from well 2 of test 
case 1 of Hill (1992). Time zero has no pumpage; at subsequent times constant pumpage 
is applied. The K1 parameter represents the hydraulic conductivity in the top of two lay-
ers. The K2M parameter represents a multiplicative parameter that, combined with an 
assumed linear trend, defines the hydraulic conductivity of the bottom layer. S1 and S2 

Table 3: Selected dimensionless and composite scaled sensitivities 
from test case 1 of Hill (1992).

Parameter name

Observation 
name

K1 K2 KRB

WELL1 -0.652x10-4 -0.289x10-4 1.17

WELL2 180 34.5 1.17

WELL3 351 115 1.17

RIVER 0.399x10-2 0.177x10-2 0.109x10-4

Composite Scaled Sensitivities (css)

197 60.0 1.01
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are storage coefficients of the top and bottom layers, respectively.

Guideline 12:  Evaluate the potential for additional estimated parameters
At any stage of model calibration, composite scaled sensitivities can be analyzed as de-

scribed in Guideline 3 to determine if the available data are likely to support additional detail in 
representing the system characteristics associated with the defined parameters. Parameters with 
large composite-scaled sensitivities can be subdivided in ways that are consistent with other data, 
such as geologic and hydrogeologic data in ground-water problems. The new set of defined param-
eters can then be evaluated using the methods of Guideline 3, and regression pursued if warranted.

Guideline 13: Use confidence and prediction intervals to indicate parameter and 
prediction uncertainty 

Confidence and prediction intervals can be constructed using the methods described in the 
sections “Parameter Statistics” and “Prediction Uncertainty” in the first part of this report. Thus, in-
stead of reporting a single predicted value, a predicted value and a confidence or prediction interval 
are reported. For example, linear confidence intervals for a set of parameter values were shown in 
figure 10 in Guideline 9. Ideally, confidence intervals are intervals in which the true parameter val-
ue or true predictive quantity is likely to occur with some specified probability. Prediction intervals 
differ from confidence intervals in that they include the effect of measurement error (see eq. 34 and 
related text). Prediction intervals need to be used if the intervals are to be compared to measured 
values and are most commonly constructed for simulated predictions.

Confidence intervals are for the true average value (Ott, 1993, p.519). Confidence intervals 
on average values depend not only on the variance of the original population, but also on the sam-
ple size used to calculate the estimated average.  This is confusing to many users, who are likely 
to look at, for example, the confidence intervals of figure 10 and conclude that they are too small. 
This judgment, however, needs to be made in the context of the confidence intervals being con-
structed for the average value. To demonstrate the significance of this, consider a simple example 
using a generated set of 300 normally distributed numbers. Figure 14 shows the range of the 300 
numbers. Also included are estimated means calculated as   

, (36)

and their associated confidence intervals, calculated as:

                                                                               (37)
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where s is the sample standard deviation and n is the sample size (300 for the example). From this 
simple example it can be seen how few samples are needed for the confidence interval for the av-
erage to be much smaller than the range of the population. 

Figure 14:  Confidence intervals for a population mean given different sample sizes. The popula-
tion is composed of 300 random normally distributed numbers with a range noted by the 
bar labeled “All” and a mean noted by the mark in the center of that bar. The other bars 
are labeled with the sample size used (3, 5, and 10). The marks in the center of these bars 
are the sample means, and the lengths of the bars display the associated confidence in-
terval.

In figure 10, the range of hydraulic conductivity within a selected volume is shown by the 
solid bars, as derived from measured values. This range is analogous to the entire range of the 300 
generated random values in figure 14. The situation in figure 10 differs from the simple example 
of figure 14 in two important ways. First, and most fundamentally, the situation in figure 10 as-
sumes that an effective hydraulic-conductivity value can be applied to a specified volume of sub-
surface material. The regression analysis is valid only in so far as this assumption is valid. 

The second difference between the situations represented in figures 10 and 14 is that in fig-
ure 10 estimates are derived through regression. Thus, most of the data used to estimate the mean 
are measurements of other quantities--here, hydraulic heads and spring  flows--which are used to 
estimate the effective hydraulic-conductivity value through nonlinear regression. In contrast, the 
data used in figure 14 are samples from the population for which the mean is being estimated. 

Despite these differences, the discrepancy between the full range of values and the confi-
dence intervals displayed both in figures 10 and 14 is important to remember when interpreting re-
sults such as these shown in figure 10.

As noted in the first part of this report, both linear and nonlinear confidence and prediction 
intervals can be calculated. Linear intervals take a minor computational effort; nonlinear intervals 
take substantial computational effort because each nonlinear confidence interval limit requires 
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computational effort equivalent to a full regression. The section “Testing for Linearity” discusses 
a test with which model nonlinearity can be evaluated.

 Linear intervals use the assumption of normality of the parameter estimates in their con-
struction. As discussed in the section “Normal Probability Graphs and Correlation Coefficient 

RN
2,” the weighted residuals are the only quantities that can be readily tested for normality. A sam-

ple normal probability graph is shown in figure 15, along with graphs showing normally distributed 
random numbers generated with and without regression-induced correlations, as described in the 
section “Determining Acceptable Deviations from Independent Normal Weighted Residuals.” Fig-
ure 15 shows that most aspects of the nonlinear pattern evident in the weighted residuals can be 
explained by the regression-induced correlations.
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Figure 15:  Normal probability graphs for the steady-state version of  test case 1 of Hill (1992), 
including (A) weighted residuals, (B) normally distributed, uncorrelated random num-
bers, and (C) normally distributed random numbers correlated as expected given the fit-
ting of the regression. In B and C, four sets of generated numbers are shown, each with 
a different symbol.

Christensen and Cooley (1996; in press) show that in nonlinear problems, nonlinear confi-
dence intervals can be very different than linear intervals for some quantities, while they can be 
very close for others. It appears that linear confidence intervals are useful as a general indication 
of uncertainty in many circumstances, but, if at all possible given computer resources, some non-
linear intervals need to be calculated if the model is nonlinear.

 Linear and nonlinear confidence intervals, along with any other method of uncertainty anal-
ysis, such as Monte Carlo methods and the methods presented by Sun (1994), are based on the as-
sumption that the model accurately represents the real system. In truth, all models are 
simplifications of real systems, and the accuracy of the uncertainty analysis is in question. Accu-
racy of uncertainty analyses is very difficult to evaluate definitively. Steen Christensen and R.L. 
Cooley (written commun., 1997) compared nonlinear prediction intervals to measured heads and 
flows indicating good correspondence between the expected and realized significance level of the 
intervals. If model fit to data indicates model bias, the theory suggests the calculated intervals do 
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not reflect all aspects of system uncertainty, and, conservatively, they might be best thought of as 
indicating the least amount of uncertainty. That is, actual uncertainty might be larger than indicated 
by the confidence intervals. If prediction intervals are dominated by the measurement error term, 
they are less likely to be prone to error. Unfortunately, in many circumstances the confidence in-
tervals are of more interest because they reflect model uncertainty most clearly. Cooley (1997) pro-
vides additional analysis of nonlinear confidence intervals.

Guideline 14: Formally reconsider the model calibration from the perspective of 
the desired predictions

It is important to evaluate the model relative to the desired predictions throughout model 
calibration, as discussed in the beginning of the section “Guidelines for Effective Model Calibra-
tions”. For reasonably accurate models, it also is useful to consider the predictions more formally, 
as described below. In this work it is suggested that formal analysis using uncalibrated models is 
likely to produce misleading results, given the nonlinearity of the models considered. It can be dif-
ficult to determine when a model is sufficiently accurate, but at the very least the obvious errors in 
system representation and the relation of the observations to simulated equivalents need to be re-
solved, and weighted residuals need to be approximately random. The analysis is divided into two 
approaches.

First, predictions and linear confidence intervals on the predictions can be calculated for all 
reasonably accurate models to evaluate how different sets of observations and conceptual models 
are likely to affect both the simulated predictions and their likely precision. Linear confidence in-
tervals are suggested instead of nonlinear confidence intervals or either kind of prediction interval 
because linear confidence intervals can be calculated quickly and represent the prediction uncer-
tainty contributed by the model and the parameter estimates.

Second, the model parameters and the simulated predictions can be evaluated to determine 
which parameters and what system features are likely to be most important to prediction accuracy. 
This is accomplished using sensitivities related to the regression observations and the predictions, 
and statistics calculated from these sensitivities, and can be used to guide subsequent field and 
model calibration efforts. The procedure for such an analysis is outlined in figure 16. 
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1. Acceptable means that this parameter is estimated well compared to other parameters, from the perspec-
tive of simulating predictions, or is unimportant to the predictions of interest. Improved estimation of this 
parameter and improved representation of the system features with which this paramter is associated are 
likely to be less important to improving prediction accuracy than for other parameters
2.  Improved estimation of this parameter and improved representation of the system features with which it 
is associated probably are important to improved prediction accuracy.
3. The parameter correlation coefficients needed for this analysis are calculated using unestimated as well 
as estimated parameters, and include only the observations and prior information used in the calibration.
4. The prediction correlation coefficients needed for this analysis are as in 3, but include predictions as 
well as the observations and prior information used in the calibration.

Figure 16: Classification of the need for improved estimation of a parameter and, perhaps, associ-
ated system features. The classification is based on statistics which indicate the impor-
tance of parameters to predictions of interest and (A) the precision of parameter 
estimates or (B) the uniqueness with which parameters are estimated by the regression.

A. Precision of the parameter estimate

Poor: Large parameter 
composite scaled sensitivity, 
coefficient of variation, or 

confidence interval

Good: Small parameter 
composite scaled sensitivity, 
coefficient of variation, or 

confidence interval

Importance 
of the 
parameter 
to 
predictions 
of interest

Not important:
Small prediction 
scaled sensitivity

I. Acceptable1 II. Acceptable1

Important:
Large prediction 
scaled sensitivity

IV. Improve estimation of 
this parameter and  associated 

system features.2
III. Acceptable1

B. Uniqueness of the parameter estimate

Poor: The absolute value of 
some of this parameter’s 

correlation coefficients are 

close to 1.0.3

Good: All of this parameter’s 
correlation coefficients have 

absolute values less than 

about 0.95.3

Importance 
of the 
parameter 
to 
predictions 
of interest

Not important: 
The same parameter 
pairs are extremely 

correlated.4

I. Acceptable1 II. Acceptable1

Important: 
Previously correlated 
parameter pairs are 

uncorrelated.4

IV. Improve estimation of 
this parameter and associated 

system features .2
III. Acceptable1
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Parameter correlation coefficients are cited in figure 16 as measures both of the uniqueness 
of the parameter estimate and the importance of parameters to the predictions of interest. In both 
cases, the correlation coefficients are variations of the parameter correlation coefficients printed at 
the end of most regression runs, as discussed above in the sections “Variances and Covariances” 
and “Correlation Coefficients.” An example of the utility of such correlation coefficients can be 
found in the following ground-water modeling example. Consider a ground-water flow model cal-
ibrated with hydraulic-head and streamflow gain or loss observation data. The calibrated model is 
being developed to predict (a) hydraulic head at a location where no measurement can be obtained, 
and (b) advective transport from the site of a contaminant spill. Correlation coefficients for all pa-
rameters are obtained using the calibrated model using all defined parameters (see section “Vari-
ances and Covariances”); the prediction correlation coefficients are obtained by adding the 
prediction hydraulic-head location and advective transport as ‘observations’ in the input file and 
again calculating the correlation matrix for the same set of parameters. A similar calculation is re-
ported by Anderman and others (1996), showing that advective-travel was affected by individual 
parameter values, while hydraulic heads were not. In this circumstance, prediction of hydraulic 
heads did not require uncorrelated parameter estimates while prediction of advective travel did.

An example analysis of predictions is presented in figure 17. Prediction scaled sensitivities 
calculated using equation 12 are compared to parameter composite scaled sensitivities of equation 
10.  In the example, the predictions of interest are the cartesian components of advective travel sim-
ulated by particle tracking  using the ADV Package of Anderman and Hill (1997). The figure shows 
the range and mean of the prediction scaled sensitivities for eight transported particles. The predic-
tion scaled sensitivity is defined to equal the percent change in the advective transport caused by a 
one-percent change in parameter value. The figure clearly shows that parameters T3 and T4 are 
most important to the determination of advective-transport distance in all three coordicate direc-
tions, and that the observations used in the regression provide more information for parameter T3 
than for parameter T4. This type of information can be invaluable for understanding model 
strengths and weaknesses and for planning additional modeling and data collection efforts.
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Figure 17: Composite scaled sensitivities for estimated parameters and prediction scaled sensitiv-
ities for the spatial components of predicted advective transport. The composite scaled 
sensitivites for parameters estimated in the regression are shown using black bars; those 
not estimated in the regression are shown using gray bars. The prediction scaled sensi-
tivities are defined as the percent change in the prediction given a one-percent change in 
the parameter value, so ‘Percent change’ is used to label the vetical axes.
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ISSUES OF COMPUTER EXECUTION TIME

Computer execution time is often a problem when using regression methods. Thus, a set of 
hints for effective use of regression also needs to include a few ideas about model construction as 
it affects execution time. The suggestion about starting with a relatively simple model of the 
ground-water system and building complexity as warranted by the system and by the available da-
ta, as discussed in guideline 1, also is relevant to the issue of minimizing execution time.  Starting 
with a simple model often results in shorter execution times.  

Execution times for regression, or inverse, simulations can be estimated using execution 
times for forward simulations (a simulation for hydraulic heads in a ground-water flow problem) 
as:
 Ti = 2(NP) Tf (1+NP)                                                           (38) 

where 
Ti is the execution time for the regression (inverse) solution;

Tf is the execution time for the forward solution; and 

NP is the number of parameters being estimated by regression. 

This assumes that the number of parameter-estimation iterations approximately equals twice the 
number of parameters, that is, 2(NP), which is, on average, typical. The (1 + NP) term is for one 
forward simulation and one simulation to calculate sensitivities for each of the NP parameters. The 
NP sensitivity simulations solve a slight variation of the forward problem for the forward- or back-
ward-difference sensitivities of UCODE, or sensitivity equations that result from taking the deriv-
ative of the forward equation with respect to the parameter in MODFLOWP. In both cases, each 
of the sensitivity simulations take, on average, the same amount of execution time as a forward 
simulation.

Experience indicates that inverse model execution times that exceed about 15 hours (an 
overnight simulation) commonly occur when the forward execution time exceeds 30 minutes. The 
number of grid rows, columns, and layers, and the number of time steps this execution time allows 
depends on the speed of the computer and the characteristics of the simulated system, including the 
contrasts present in the hydraulic-conductivity field. 

Sometimes simple changes in the simulation can dramatically improve execution times. 
For example, the initial hydraulic conductivity structure of the model described by D’Agnese and 
others (1998, in press) was characterized by values in bordering finite-difference cells that differed 
by more than five orders of magnitude in many parts of the model. Introducing single cells of mod-
erate hydraulic conductivity between the high and low valued cells in most of the model resulted 
in about a 6-fold decrease in execution time with little effect on simulated results. 
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Another simplification that can dramatically reduce execution time is to replace nonlinear 
forward problems with linear approximations as much as possible without substantial diminish-
ment of accuracy. In ground-water flow simulations, for example, water-table and convertible lay-
ers (as they are called in MODFLOW and MODFLOWP) often can be replaced by confined layers 
with approximate thicknesses. This is nearly always good practice for steady-state simulations, but 
can be too inaccurate for transient simulations in which layers are substantially de-watered during 
the calibration period. The inaccuracy produced by this simplification can be evaluated by compar-
ing forward simulations that include the water-table and convertible layers with those that include 
the approximate thicknesses.

EXAMPLE FIELD APPLICATIONS AND SYNTHETIC TEST CASES
 The nonlinear regression methods, diagnostic and inferential statistics, and guidelines de-

scribed above have been used successfully in a number of applications. Because nonlinear regres-
sion is a useful but imperfect tool for model calibration, its application is not always 
straightforward. Thus, it can be helpful to consider other applications when designing and report-
ing a modeling study using nonlinear regression. References describing applications using the 
methods described in this report include Cooley (1979, 1983a), Cooley and others (1986), Chris-
tiansen and others (1995), McKenna and Poeter (1995), Anderman and others (1996), Barlebo and 
others(1996), D’Agnese and others (1996, 1998, in press), Tiedeman and others (1997), and  Eberts 
and others (in press). Similar approaches were used by Gailey and others (1991), Tiedeman and 
Gorelick (1993), Yager (1993), Kuiper(1994), Olsthoorn (1995), Christensen (1997), and Chris-
tensen and others (in press). In addition, Hill and others (1998) discuss the calibration of a complex 
synthetic test case using the methods discussed above, and Poeter and McKenna (1995) present a 
synthetic ground-water transport test case that evaluates stochastically generated zonations using 
nonlinear regression methods. The synthetic test cases provide the opportunity to conclusively 
evaluate the accuracy of the models calibrated using the methods described in this report, and in 
both studies better models determined as discussed in this report produced more accurate predic-
tions. Poeter and Hill (1997) demonstrate many of the ideas presented in this report using simple 
examples. 
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USE OF THE GUIDELINES WITH DIFFERENT INVERSE MODELS
The methods and guidelines presented above were used to design UCODE and MOD-

FLOWP. Many aspects of the methods and guidelines, however, are broadly applicable to other 
inverse models, with some modifications. Likely differences between UCODE and MODFLOWP 
and other inverse models are categorized below, with a few words about how the guidelines would 
be adapted. 

Alternative Optimization Algorithm
Presently used alternative algorithms for the minimization of the least-squared objective 

function with respect to parameter values include adjoint-state methods (as used by, for example, 
Carrera and Neuman, 1986; Xiang and others, 1992; Tarantola, 1994), and global optimization 
methods such as simulated annealing, genetic algorithms (Wagner, 1995), and tabu search (Zheng 
and Wang, 1996). In adjoint-state methods, the derivative of the objective function with respect to 
the parameter values is calculated and can be used instead of the composite scaled sensitivities. 
There are no replacements for the one-percent and dimensionless scaled sensitivities and the pa-
rameter correlations in the adjoint-state method. It is not uncommon, however, for adjoint-state al-
gorithms also to be programmed to calculate the sensitivities and variance-covariance matrix on 
the parameters as discussed above, in which case the guidelines apply directly.

Global optimization methods are most useful for problems with very irregular objective 
function surfaces that are not amenable to the much more numerically efficient gradient search 
methods, such as modified Gauss-Newton or adjoint states. For problems with such irregular ob-
jective functions, scaled sensitivities, composite scaled sensitivities, and parameter correlation co-
efficients are likely to change values so dramatically as parameter values change that they would 
be worthless. Other aspects of the guidelines, however, would still be applicable.

Alternative Objective Functions
The primary alternative to the least-squares objective function is the sum of the absolute 

values of weighted residuals. Minimizing this objective function requires methods that do not use 
sensitivities or derivatives of the objective function, so that there are no scaled sensitivities, com-
posite scaled sensitivities, or parameter correlation coefficients. As with adjoint states, however, 
the algorithms developed for this objective function also have been programmed to calculate sen-
sitivities, so that, again, the guidelines would apply directly.

Direct Instead of Indirect Inverse Models

The most dramatically different possibility that presently exists is direct inverse modeling 
(Yeh, 1986; Sun, 1994). In direct inverse modeling, values of the dependent variable (for example, 
hydraulic head for the ground-water flow equation or concentration for the transport equation) are 
determined using usually sparse field data and these values are used directly to calculate the model 
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input values. This is in contrast to indirect methods, such as the method discussed in this work. The 
direct methods have been considered longer than the indirect methods in inverse modeling, but 
have been shown consistently to be more unstable in the presence of typical measurement errors. 
The direct methods do not use sensitivities and rarely calculate them, so that there are no equiva-
lents to the scaled sensitivities, composite scaled sensitivities, correlation coefficients, and confi-
dence intervals. Other aspects of the guidelines would still apply.

Alternative Parameterization Approach

While this work emphasizes estimating relatively few parameter values, an alternative is to 
estimate many parameter values (often a unique value for each finite element or finite-difference 
cell for numerical models) for spatially distributed system characteristics, such as hydraulic con-
ductivity in ground-water problems. Then smoothness criteria, or other types of regularization, are 
imposed to achieve a tractable regression problem. Such methods are presented by Tikkonov and 
Arsenin (1977), and tend to be most useful when very little is known about the distribution, or when 
the distribution is known to be smooth.  For such a parameterization approach, the concept of start-
ing simple and building complexity might be useful when designing the regularization method.  
Application of other aspects of the guidelines is unclear.
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APPENDIX A: THE MAXIMUM-LIKELIHOOD AND LEAST-SQUARES 
OBJECTIVE FUNCTIONS

The maximum-likelihood objective function is developed by considering the random na-
ture of y, the observations.  This random nature results from conceptualizing measurement error as 
random.  If Y is the vector of jointly distributed random variables of which y is a realization, the 
joint probability distribution function (pdf), fY(y), depends on the true model and true parameter 

values.  For the purpose of estimating parameters for a given assumed model, consider the joint pdf 
conditioned on a particular set of parameter values, fY(y|b).  This joint pdf can be thought of as the 

probability that different sets of possible observations would occur given the parameter values b.  
In parameter estimation, the elements of y are known and we would like to estimate b.  A reason-
able requirement of the estimates is that they maximize the probability of obtaining the observa-
tions, y.  This requirement is imposed by defining the objective function using the likelihood 
function, l(b|y), which is defined as:

l(b|y) = fY(y|b). (A1)

If the true errors are from a joint, normal distribution, the likelihood function equals (Brockwell 
and Davis, 1987, p. 247):

l(b|y) = , (A2)

where, as in equation 1 and 2, 
e = y  - y’,  
y’ is a function of b, and 
ND is the number of observations.  

Replacing V(ε) using equation C21 (see below), taking the natural log, and multiplying by -2 pro-
duces the maximum-likelihood objective function:

S’(b) = -2 ln(l(b|y)) = ND ln2π - ln . (A3)

Because of the multiplication by a negative number, the maximization problem becomes a mini-
mization problem, and the objective is to determine the parameter estimates that minimize equation 
A3.  To include prior estimates of the parameters, e and ω are augmented as described in Appendix 
B, ND is replaced by ND+NPR, and the determinant of A3 is expanded so that A3 can be expressed 
as:

S’(b) = (ND+NPR)   ln2π+ (ND+NPR)  ln σ2 - ln |ω d| - ln |ω p| + , (A4)

1
2π
------ 

  ND 2⁄
V ε( ) 1 2⁄– {  

1
2
---– e

T
(V(ε ) ) 1–

e} exp

1

σ2
------ ω e

T 1

σ2
------ ω 

  e+

e
T 1

σ2
------ ω 

  e



76

where ω d and ω p are the sections of the weight matrix applicable to dependent variable observa-

tions and prior estimates of the parameters, respectively.

For any assumed model, set of observations, and defined weight matrix used in the param-

eter-estimation procedure, ω  is approximated and ND, σ2, and ω  are constant.  Eliminating terms 

of equation A4 that do not depend on b and multiplying by σ2 yields:

S(b) = eT ω e. (A5)

Thus, for the optimization process, the maximum-likelihood objective function equals the sum-of-
squares objective function (eq. 2).

The development of equation A5 from the maximum-likelihood objective function requires 
that the true errors be from a joint, normal distribution, a condition not required when the equation 
is derived in other ways.
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APPENDIX B: CALCULATION DETAILS
Three aspects of the calculations needed for the nonlinear regression methods described in 

this work require more detailed explanation. These include a more detailed description of the ma-
trices and vectors of equations 2, 3, 4, and 26, discussing a possible addition to equation 4a, and 
calculation of the damping parameter and convergence of equation 4.

Vectors and Matrices for Observations and Prior Information
The primary vectors and matrices of concern in nonlinear regression are the measured val-

ues of vector , the simulated values of vector , the sensitivities of matrix X, the weights of ma-

trix ω, the residuals of vector e (equal to ) and the true errors of vector ε. These  vectors and 

matrices, including terms for both the observations and prior information used in the regression, 
are as follows. Except for e and ε, these vectors and matrices are used in equations 2, 3 and 4a of 
this report. The vectors e and ε are included here because they appear frequently in regression lit-
erature. A few common relationships are displayed at the bottom of this section using vector nota-
tion.

          y = , X =  ,     ω =  

V is the weighting for the observations; U is the weight matrix for the prior information, and it is 

assumed that the true errors in the observations are independent of the true errors in the prior 

information.
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    y’= ,  e =     , and                  ε =     

These definitions are used in the following sections of this appendix.

 Quasi-Newton Updating of the Normal Equations
For problems with large residuals and a large degree of nonlinearity, Dennis and others 

(1981) suggest substituting Xr
Tω Xr + Rr for Xr

Tω Xr into equation 4a at selected iterations, where 

Rr is an estimate of the difference between Xr
Tω Xr and the Hessian matrix , and is cal-

culated by quasi-Newton updating as (Dennis and others, 1981): 

Rr = 0  for r = 0

Rr = t Rr-1  +   for r > 0 (B1)

where
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and all other variables are defined after equations 1 and 4. Rr is calculated starting at r = 1, but is 

only included in equation 4a in later iterations. Performance of the method depends on when Rr is 

included. Cooley and Hill (1992) found that it is most advantageous to include Rr after the sum of 

squared, weighted residuals no longer changes very much at each parameter-estimation iteration. 
In the UCODE and MODFLOWP, Rr is included for all iterations after the sum of squared, weight-

ed residuals decreases by less than a user-defined percentage over two iterations; in UCODE the 
value is set to one percent. In MODFLOWP, Rr also can be included after a user-specified number 

of iterations. The more elaborate criteria for inclusion of Rr suggested by Dennis and others (1981) 

require additional model simulations. Considering the large problems that are expected to be sim-
ulated with UCODE and MODFLOWP and the modest expected benefit obtainable in most cir-
cumstances, the more elaborate criteria seemed impractical and were not included. When Rr is 

included in equation (4a), the elements of the diagonal scaling matrix, C, are calculated as 

[(Xr
TωXr+ Rr)ii.

        Calculating the Damping Parameter and Testing for Convergence
For problems with one or more log-transformed parameters, requiring the absolute value of 

equation 5 to be less than DMAX (MAX-CHANGE for UCODE) for any parameter-estimation it-
eration, and requiring equation 7 to be satisfied to achieve convergence, produces inconsistent re-
sults.  The following example illustrates the problem as manifested when applying DMAX.

If the estimated parameter is bi = log K, where K is hydraulic conductivity, and 

DMAX=2.0, placing the restriction on log K requires that (log K)r+1, the estimate at the next pa-

rameter-estimation iteration, be between (log K)r-2.0(log K)r and (log K)r+2.0(log K)r. If K at pa-

rameter-estimation iteration r is close to 1.0, say K=1.1, the restriction requires (log K)r+1 to be 

between -0.041 and 0.124, so that Kr+1 is required to be within the narrow range 0.91 and 1.33. If 

K at parameter-estimation iteration r is far from 1.0, say K=1×10-4, the restriction requires that (log 

K)r+1 be between -12.00 and 4.00, so that Kr+1 is allowed to vary within the very wide range of 

1×10 -12 and 1×10 4. More physically meaningful limitations are produced if the restriction is 
placed on the native parameter, which requires that K be between 0.0 and 3.3 in the first situation 

and between 0.0 and 3×10-4 in the second situation. In both situations, the lower limit of 0.0 is a 
result of estimating a log-transformed parameter and is always the lower limit for a log-trans-
formed parameter when DMAX > 1.0.

t min ρr 1– d
r 1–
T( ) X

r
X

r 1–
–( )Tω e

r
ρr 1– d

r 1–
T( )R

r 1–
ρr 1– d

r 1–
( )[ ]⁄ 1.0;

 
 
 

=



80

To address this problem, a number of quantities are calculated at each parameter-estimation 
iteration, as shown in table B1. The circumstances treated individually are: (1) parameters that are 
not log-transformed, (2) parameters that are log-transformed and the regression is trying to increase 

their value (dr
i<0), and (3) parameters that are log-transformed and the regression is trying to in-

crease their value (dr
i>0). The objective that allows a single damping parameter to be chosen de-

spite the individual circumstances is that the smallest of all value is needed, regardless of the of 
how it is calculated.

Table B1.-- Quantities used to test for convergence and to calculate damping parameter ρr for 
parameter-estimation iterations.  

1. Largest absolute value needs to be less than TOL for convergence.
2. Otherwise ρr=1.0, except as needed for oscillation control. For each parameter-estimation itera-

tion, the smallest of all ρr values is used and printed with the related parameter number in the 
output file.

3. To enable parameter values to increase more quickly after being assigned values near zero, bi
0

 

replaces bi
r if bi

r< bi
0/10 3

4. Only use if DMAX<1.0; otherwise, ρr=1.0 except as determined for oscillation control.
5. Equation B5.

The equations are derived as follows. For untransformed parameters, the fractional change 
of the native parameter value simply equals the change calculated by solving equation 4a divided 

by the value of the parameter value, or di
r/bi

r, where di
r is the ith element of vector dr and bi

r is the 

ith element of vector br. For log-transformed parameters, the fractional change in the native value 

equals (exp(bi
r+1) - exp(bi ))/exp(bi

r), or, equivalently, (exp(bi
r+1)/exp(bi

r))-1.0. Substituting 

exp(di
r) = exp(bi

r+1)/exp(bi
r), which is derived from equation (4b) with ρr = 1.0, yields 

exp(di
r) - 1.0 (B2)

In column B of table B1, the equation for untransformed parameters is obvious, and the 

Parameter category

A. Convergence test 
on the fractional 

change in the native 

parameter value 1

B. Equation for ρr if the 
absolute value of the 

quantity in column A is 

larger than DMAX 2

C. Fractional 
parameter change 

used to adjust ρr for 

oscillation control 5

Untransformed di
r/bi

r 3 ρr=DMAX / (|di
r/bi

r|) di
r/|bi

r|

Transformed, dr
i>0 di

r-1 ρr=ln(DMAX+1)) / di
r di

r/|bi
r|

Transformed, dr
i<0 di

r-1 4 ρr=ln(DMAX-1)) / di
r di

r/|bi
r|
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equations for log-transformed parameters are derived using equation (B2). If dj
r > 0.0, the DMAX 

restriction requires that (exp(bj
r+1)/exp(bj

r))-1.0 < DMAX, or, equivalently,

ρrdi
r < ln (DMAX+1.0), i=1,NP (B3)

If dj
r < 0.0 and DMAX < 1.0, (exp(bj

r+1)/exp(bj
r))-1.0 > -DMAX, or, equivalently,

ρrdi
r > ln (1.0-DMAX). (B4)

Dividing B3 and B4 by di
r and noting that division by a negative number transforms a “<” to a “>” 

gives the equations in table B1, column B.

An exception to equation (B4) is described in footnote 4 of table B1. This exception applies 
to log-transformed parameters if DMAX > 1.0, because, as mentioned previously, the exponential 
of a log-transformed parameter is always greater than 0.0, and can never decrease enough to re-

quire ρr to be less than 1.0 if DMAX > 1.0. Thus, if di
r < 0 for a log-transformed parameter and 

DMAX >  1.0, parameter i is excluded from consideration when calculating ρr. 

Oscillation control is achieved using a slightly modified version of the method described 
by Cooley (1983a, p. 1274; 1993). A preliminary damping parameter, ρr*, is calculated to mini-

mize oscillations according to the following, where  is the parameter with the smallest ρr in iter-

ation r.

DMX r = di
r/|bi

r|

ρr* = 1                r = 0  or   (B5a)

 r>0  and  (B5b)

where the condition on j has been added to Cooley's method. 

Typically, DMAX is larger than 1.0 and less than about 2.0. Use values less than 1.0 to re-
duce excessive parameter-value oscillations. Note that values less than 1.0 do not prohibit param-

jr

jr jr 1–≠

s DMXr/ ρr 1–  DMXr 1–( )=

If s 1–≥ ρr*
3 s+
3 s+
--------------   =

If s 1–< ρr* 1 2 s( )⁄= 







jj jr 1–=
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eter values from changing sign because bi
o replaces bi

r when calculating ρr if bi
r < | bi

o | /103.

Solving the Normal Equations
Using double precision as suggested by Stewart (1972, p. 226-227), equation (4) has been 

solved accurately and efficiently in many applications using Cholesky LDLT decomposition (Den-
nis and Schnabel, 1983, p. 50-51). Exceptions were plagued by strong correlations between param-
eters or insensitive parameters, and were resolved by reparameterization. Dennis and Schnabel 
(1983, p. 221) and Seber and Wild (1989, p. 621) suggest that solving the alternative formulation 
X d = ( y - y ’ ) using QR or singular-value decomposition (Dennis and Schnabel, 1983, p. 49-51; 
Seber and Wild, 1989, p. 680-681; Press and others, 1989, p. 52-63) is more stable, but it is unclear 
whether or not they used the scaling and Marquardt parameter which adds stability to equation 4. 
Press and others (1989, p. 515-520) suggest using singular-value decomposition for linear regres-
sion, but use Gauss-Jordon elimination to solve a variation of equation 4 that includes similar scal-
ing and implementation of the Marquardt parameter for nonlinear regression. Considering the 
success experienced using Cholesky decomposition, Cholesky decomposition is used in UCODE 
and MODFLOWP.
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APPENDIX C: TWO IMPORTANT PROPERTIES OF REGRESSION
This appendix presents two basic properties of weighted linear regression, which are gen-

erally known as the Gauss-Markov theorem, in a manner which emphasizes the difficulties pro-
duced when the regression  is nonlinear. More traditional derivations of the Gauss-Markov theorem 
can be found in Bard (1974) and Beck and Arnold (1977).

The two properties of concern are:
1. Parameters estimated by linear regression are unbiased.
2. The weight matrix needs to be defined a particular way for the parameter estimates to have the 

smallest variance, and for the parameter variance-covariance matrix to be calculated using 
equation 26.

Definitions and identities used in both proofs are presented first followed by the two proofs.

Identities

True linear model. The true model is unknown and correctly represents the system of con-
cern. A true linear model can be represented as:

y = β0 + β1X1 + β2X2 + . . .βjXj . . . βνXν+ ε       Ε(ε)=0 (C1)

where,
y is a measurement of the dependent variable (here, hydraulic heads, flows, and so on);
βj are the true (unknown) parameter values;

Xj are the independent variables (here, location, depth, time, etc.);

ν is the number of terms in the true model; and 
ε is the true error, and needs to have a mean of zero, as shown, for the regression to be valid.

True nonlinear model. The true nonlinear model can not be represented as in C1, and re-
quires the more general form presented after equation 1 -- that is, using vector notation, y= F(β,ζ) 
+ ε., where F repesents the form of the unknown nonlinear function, ζ represents the independent 
variables, and the other symbols are as defined for equation C1.

Linearized true nonlinear model. A linearized true nonlinear model is defined here for the 
purposes of this discussion. The model is linearized using a Taylor series expansion about the true 
parameter values and has the form of C1, within a constant additive vector, but the Xj are deriva-

tives of the nonlinear model with respect to the parameters, evaluated at the true parameter values. 
Linearized models are further discussed below.

Approximate linear model. The approximate model is the model being developed to rep-
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resent the system of concern, and is the model to be calibrated. A linear approximate model can be 
represented as:

y = b0 + b1X1 + b2X2 + . . .βjXj . . . βnXn + e  = y’ + e (C2)

where 
y is a measurement of the dependent variable (here, hydraulic heads, flows, and so on), as above;
bj are the estimated parameter values;

Xj are the independent variables (here, location, depth, time, etc.);

n is the number of terms in the approximate model;
e is the true error; and
y’ is the simulated equivalent of the measured dependent variable.

Approximate nonlinear model. As for the true model, the approximate nonlinear model 
can not be represented as in C1, and requires the more general form presented after equation 1 -- 
that is, using vector notation, y= f(b,ξ) + e, where f repesents the form of the unknown nonlinear 
function, ξ represents the independent variables, and the other symbols are as defined for equation 
C2.

Linearized approximate nonlinear model. The linearized approximate nonlinear model is 
produced using a Taylor series expansion about a defined set of parameter values, b*. Within an 
additive vector that is constant for any b* (this vector is needed to derive the interative equation 
4a, but is not important to the present discussion), the linearized approximate nonlinear model can 
be expressed in the form of equation C2. In this situation however, the Xj are no longer simply in-

dependent variables, but equal the derivatives of the approximate linear model with respect to the 
parameter values, evaluated at b*. These derivatives were defined for equation 8 and have the fol-
lowing characteristics:
1. Like the Xj for linear problems, the derivatives include the independent variables; but they also 

include the effects of other aspects of the nonlinear model.
2. Because of model nonlinearity, the values of the derivatives depend on the parameter values in 
b*. 
3. The derivatives generally are called sensitivities because the represent the senstivity of the sim-
ulated value to a change in the parameter value.

Linearized models reproduce the same simulated value at b* as the nonlinear model, by 
definition, and often closely mimick the nonlinear model for values of b near b*. As the linearized 
model is evaluated for values further from b*, simulated values will vary from those of the approx-
imate nonlinear model depending on its degress of nonlinearity. This deviation is apparent in the 
sum-of-squared residuals surfaces of figure 2, which shows an objective-function surface calculat-
ed using the Theis equation as the approximate nonlinear model, and two objective-function sur-
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faces calculated using a linearized approximate model. The linearized surfaces closely mimic the 
nonlinear surface near the b* values, marked by an x, and mimick it less well, and even poorly, for 
increasingly different sets of parameter values.

The importance of X and X. The different symbols, X and X, are used in C1 and C2 be-
cause they may be different. For linear problems they often are the same, but differences occur 
when the approximate model includes more or fewer terms than the true model (n does not equal 
ν). In addition, errors in measuring the independent variables could affect Xj and Xj, but this prob-

lem is not addressed in this report.

For a nonlinear model, an equation of the form C2 is used to represent the linearized ap-
proximate nonlinear model, as discussed above. For nonlinear problems, the Xj also vary depend-

ing of the set of parameter values about which model is linearized, and the difference between Xj 

and Xj, becomes greater as the optimized parameter values differ more from the true parameter val-

ues.

Functional form of observations. The ith observation used in the regression can be ex-
pressed in terms of the true linear model as:

yi = β0 + β1X1i + β2X2i +  . . .βjXji . . . βνXνi  + εi (C3)

and in terms of the approximate linear or linearized model as:

yi = b0 + b1X1i + b2X2i +  . . .βjXj .  .  . βnXni + ei  = y’i + ei (C4)

All observations used in the regression together can be expressed in terms of the true linear 
model using matrix notation (vectors are underlined lower case or greek letter, matrices are under-
lined capital letters) as:

y = X β + ε (C5)

and in terms of the approximate linear or linearized model as:

y = X b + e (C6)

For the linearized approximate nonlinear model, each element of the X array is one of the 
derivatives, or sensitivities, discussed above. An expanded form was shown in appendix B.

Normal equations. To calculate parameter values that produce the closest match to the ob-



86

servations, the weighted least-squares objective function is minimized with respect to the parame-
ter values. Using the approximate linear model, this produces what are called the normal equations, 
expressed in matrix notation as:

b = (XTω X)-1 XTω y (C7)

Despite some variation, the similarity between equations C7 and 4a is apparent, with the 
major difference being that C7 produces the actual optimal parameter values after being evaluated 
just once, while equation 4a produces a vector that is used to update the parameter values, and op-
timal parameter values are obtained only after a number of parameter-estimation iterations. Be-
cause, as noted above, the interative nature of the equations are not central to the issue addressed 
here, equation C7 is used. 

Random variables. The primary random variable in the above equations are the true errors 
ε. Then, noting that functions of random variable are random, y is random from C1, e is random 
from C2, and b is random from C7. Because for any step of the analysis teh nonlinear model is lin-
earized and X is evaluated for a defined set of parameters, X it is not thought of as being random. 

Expected value. The expected value can be taken of any term, and is represented as E(.) or 
E[.], where the term appears within the parentheses or brackets. As noted above, ε has a mean of 
zero, so E(ε)=0.

Variance-covariance matrix of a vector. Proof 2 requires the evaluation of the variance-
covariance matrix of the vector of estimated parameters and the true errors. The variance-covari-

ance matrix of any vector v is calculated as E[ (v-E(v)) (v-E(v))T ].

Proof 1: Parameters estimated by linear regression are unbiased.
Take the expected value of the optimized parameters, as calculated using equation (C7):

E(b’) = (XTω X)-1 XTω E(y) = (XTω X)-1 XTω X β (C8)

If   X = X, 

(XTω X)-1 XTω X = I (C9)

where I is an identity matrix. Substituting C9 into C8 yields: 

E(b) = β (C10)
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Thus,  if  X = X, the expected values of the estimates equal the true values, which means that the 
estimates are unbiased. In nonlinear models, the equality is unlikely to be true, so that unbiasedness 
is not guaranteed for nonlinear models, even if the mdoel if correct.

Proof 2: The weight matrix needs to be defined in a particular way for the parameter esti-
mates to have the smallest variance.

It is desirable to estimate parameters with the smallest variance and, therefore, the greatest 
precision. The variance of the parameter estimates occur as the diagonal terms in the variance-co-
variance matrix of the parameters, which is calculated using the equation defined above as:

V(b) = E[(b-E(b)) (b-E(b))T]. (C11)

replacing b with equation (C7) and E(b) with equation (C10) yields:

V(b) = E[ ((XTω X)-1 XTω y - β) ((XTω X)-1 XTω y - β)T]. (C12)

Expanding the product on the right-hand side produces an equation with four terms:

V(b) = E[ ((XTω X)-1 XTω y) ((XTω X)-1 XTω y)T   - (C13)

((XTω X)-1 XTω y) βT   -    β ((XTω X)-1 XTω y) T   +   β βT ]

Use the matrix property (AB)T=BTAT to rearrange the first term as:

((XTω X)-1 XTω y) (( XTω y)-1  XTω y)T = (C14)

( XTω y)-1  XTω y yT X(XTω X)-1

Take the expected value of each term and note that only y is stochastic to obtain:

V(b)  =  (XTω X)-1 XTω E[y yT]ω X( XTω X)-1 - (C15)

( XTω X)-1 XTω E[y])  βT   -    β(( XTω X)-1 XTω E[y]) T   +   β βT

In the first term, apply y = X β + ε, so that:

E[y yT] = E[(X β + ε) (X β + ε)T] (C16)

 = E[(X β)(X β)T + (X β) εT + ε X βT + ε εT]

Taking the expected value of each term, and noting that only ε is stochastic and that  the second 
and third terms of equation C16 equal zero because E[ε]=0 produces:
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E[y yT] = (X β)(X βT) + E[ε εT] = X β βTXT+ E[ε εT] (C17)

Note that E[ε εT] = V(ε), the variance-covariance matrix of the true errors. This can be derived by 
applying the standard equation for calculating the variance-covariance matrix of a vector, so that 

V(ε) = E[(ε-E(ε)) (ε-E(ε))T], and noting that E(ε)=0. 

Substituting these results into equation (C15) yields: 

V(b) = (XTω X)-1  XTω X   β βT   XTω X   (XTω X)-1 (C18)

+ (XTω X)-1  XTω E[ε εT] ω X  (XTω X)-1 

- ((XTω X)-1  XTω X  β) βT  -   β((XTω X)-1  XTω X  β ) T   +   β βT

If X = X, then (XTω X)-1  XTω X = I, which gives the following:

V(b) = β βT + (XTω X)-1 XTω E[ε εT] ω X(XTω X)-1 (C19)

- β βT - β βT + β βT 

The  β βT terms cancel, leaving:

V(b) = (XTω X)-1  XTω E[ε εT] ω X  (XTω X)-1 (C20)

If the weight matrix is defined such that

 E[ε εT] = V(ε) = σ2 ω-1, (C21)

where σ2 is the true common error variance, equation C20 reduces to:

V(b) = σ2 (XTω X)-1 = s2(XTω X)-1 (C22)
where the last equals sign is approximate and s2, the calculated error variance, approximates the 
unknown true common error variance. Equation C22 is the expression commonly used to calculate 
the variance-covariance matrix for the parameter values, but really only applies if X = X, and C21 
applies.

If the equation for V(b) cannot be simplified to equation C22, equations of the form C18 or 
C20 should be used to calculate the variance-covariance matrix of the of the parameter estimates, 
although it is unclear how to evaluate C18 because β is unknown. For linear problems, equarion 
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C19 always produces a larger variance for the parameters and simulated predictions than is pro-
duced by otehr possible equations (Bard, 1974; Beck and Arnold, p. 232-234). Thus, the smallest 
variance parameter estimates are those for which equation C21 applies and, therefore, for which X 

= X and the weighting is defined such that ω = V(ε)-1 (the weighting is closely related to the vari-
ance-covariance matrix of the true, unknown errors). Although not always valid, linear theory pro-
vides the only available guidance for defining the weight matrix for nonlinear problems.

Reference
Bard, Jonathon, 1974, Nonlinear parameter estimation: New York, Academic Press, 341p.
Beck, J.V. and Arnold, K.J., 1977, Parameter estimation in engineering and science: New York, 

John Wiley and Sons, 501p.
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APPENDIX D: CRITICAL VALUES FOR THE CORRELATION 
COEFFICIENT FOR NORMAL PROBABILITY GRAPHS, RN

2 

Table D1:  Critical values of R2
N below which the hypothesis that the weighted residuals are inde-

pendent and normally distributed is rejected  at the stated significance level (from Sha-
piro and Francia, 1972; Brockwell and Davis, 1987, p.304)

[ND, the number of observations (N-OBSERVATIONS in the UCODE documentation);
NPR, the number of prior information values (NPRIOR in the UCODE documentation)]

                                                                                                                       
     ND or           Significance level              ND or           Significance level
   ND+NPR         0.05          0.10              ND+NPR        0.05            0.10     

35 0.943 0.952 81 0.970   0.975
   83 0.971   0.976

50 0.953 0.963 85  0.972   0.977
51 0.954 0.964 87  0.972   0.977
53 0.957 0.964 89  0.972   0.977
55 0.958 0.965
57 0.961 0.966 91 0.973 0.978
59 0.962 0.967 93 0.973 0.979

95 0.974 0.979
61 0.963 0.968 97 0.975 0.979
63 0.964 0.970 99 0.976 0.980
65 0.965 0.971
67 0.966 0.971               131 0.980 0.983
69 0.966 0.972               200             0.987 0.989

71 0.967 0.972
73 0.968 0.973
75 0.969 0.973
77 0.969 0.974
79 0.970 0.975

_______________________________________________________________________

References
Brockwell, P.J and Davis, R.A., 1989, Time series, Theory and methods: New York, Springer-Ver-

lag, 519 p.
Shapiro, S.S., and Francia, R.S., 1972, An approximate analysis of variance test for normality: 

Journal of the American Statistical Association, v. 67, p. 215-216. 


