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Site Characterization and
Monitoring Devices

INTRODUCTION

This appendix will acquaint the reader with the site-selection process, including the primary
criteria used for selecting a site for waste storage or scientific investigation. We will also dis-
cuss the most common monitoring devices used in unsaturated-zone studies, their principles
of operation, and the advantages and disadvantages of each.

SITE CHARACTERIZATION

The purpose of site characterization is to determine the biological, chemical, and physical
properties at a site that directly affect the movement of contaminants from or within it. How-
ever, before site characterization can take place, a site must be selected. The site-selection
process can involve a large number of criteria: the availability of land; climatological factors
that may bias the outcome of potential accident scenarios; proximity to transportation and
population centers; proximity to sensitive natural resources such as aquifers, prevailing
winds; and so on. Ideally, the site should be capable of being characterized, analyzed, moni-
tored, and modeled. Because of this, it would be prudent to select several candidate sites
based on technical criteria, depending upon the intended use of the site. For example, the cri-
teria necessary for installing a safe landfill would not be as stringent as that for installing a
low-level radioactive waste site. In many instances, local, state, or federal agencies already
will have established required site guidelines.

The site-selection process usually begins by establishing technical criteria with respect
to depth to ground water, acceptable rainfall limits, slope, elevation, and so on. After these
have been set, a large-scale reconnaissance of various geographic areas is performed. From
these areas, candidate sites are chosen and screened against minimum technical require-
ments. Site selection can be facilitated by obtaining soil maps and information on the physi-
cal properties of soil series from the National Resources Conservation Service (previously
the U.S. Soil Conservation Service), and ground water table information from the United
States Geological Survey. Once the candidate sites have been screened and a final site se-
lected, it is ready for characterization.

The goal of characterization is three-fold: (1) to identify potential pathways for the
transport of contaminants from containment areas to sensitive receptors—drinking-water
supplies, air, and so on; (2) to demonstrate that the site can be characterized, moni-
tored, and modeled, which involves field and laboratory analysis; and (3) to confirm that
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562 Appendix 1 Site Characterization and Monitoring Devices

performance objectives (which comprise data analysis and modeling) can be met. Field
characterization can be accomplished by in-situ testing, or by collecting disturbed and
undisturbed samples for laboratory analysis. In-situ testing is usually preferred, but may not
be practical for a large number of parameters. It is also time-intensive, especially for -
unsaturated-zone properties that occur at greatly reduced rates in comparison to the satu-
rated-zone environment. When designing the characterization effort, the purpose for which
the data to be collected will be used must be clear. For example, is the purpose simple data
analysis and monitoring, or modeling the site in preparation for a license application to
store hazardous waste of some type? Whatever the need, characterization efforts should be
designed in cooperation with those who will use the data: regulatory agencies, modelers,
and other personnel.

Field characterization can be grouped into the following broad categories: (1) chemical
properties; (2) physical properties; (3) flow and transport properties; and (4) biological
properties. Chemical properties of common interest include pH, chloride and sulfate con-
centrations, cation exchange capacity, and total salt concentration of the soil solution. Typical
physical properties include bulk density, particle density, porosity, and particle-size analysis.
Flow properties of interest are saturated hydraulic conductivity, unsaturated hydraulic con-
ductivity (as a function of water content), and soil-moisture characteristic curves that relate
water content to matric potential; the transport property of most interest is the dispersion co-
efficient, D (see chapter 10). Biological properties can include a host of microbiological
properties and the properties discussed for physical and chemical parameters. Details on
measurement techniques and analysis for each of these properties can be found in Klute
(1986).

For modeling purposes, initial and boundary conditions must also be known. These in-
clude the vertical profiles over a depth of interest of water content and potential; the amount
of water deposited on-site in the form of precipitation (rain and/or snow); and the amount of
water leaving the site by overland flow, drainage, and evapotranspiration. For complete char-
acterization, a representative number of samples for each parameter must be collected from
the soil surface to the depth of interest (usually the water table). No definitive method has
been presented that will provide absolute numbers or locations of samples for analysis, but
there are equations that can be used in approximating the necessary number of samples for
a chosen parameter (for example, equation 16.21 in this text). As with most scientific re-
search and data collection needs, economics will play a major role in determining the num-
ber of samples that can be analyzed.

Frequently, environmental regulations require monitoring of the unsaturated zone for
many sites. Ideally, one would wish to minimize cost yet assure reliability, which requires that
monitoring devices be installed in the best possible locations. Additionally, the sample vol-
ume for most site-selection (or other investigative) purposes is small in comparison to the
spacing interval from which the sample is taken. Because of this, there is a significant proba-
bility that any anomalies or “hot spots” will not be detected, and such areas are where one
would most wish to sample. These are areas where physical, chemical, biological, and flow
characteristics can be very different from those that exist in the site as a whole; and spots
where a contaminant may be more prone to leak. In order to detect such areas, specific ques-
tions must be asked about the site at the initial planning and installation stages: (1) what grid
spacing is needed to hit a hot spot with a specified confidence; (2) what is the probability that
a hot spot exists when none are found by sampling on a grid; and (3) for a given grid spacing,
what is the probability of hitting a hot spot of a specified size? Other questions may also
arise, but these are the most important. For further details, the reader is referred to Warrick
et al. (1996).
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MONITORING DEVICES

This section discusses factors that influence the choice of monitoring devices, and the com-
mon types of equipment used for monitoring various soil parameters in unsaturated-zone
studies, as well as various measurement techniques. The basic suitability, advantages, and dis-
advantages of each piece of equipment will be briefly outlined.

Factors Influencing Choice of Devices

The basic factors that influence the choice of monitoring devices include: (1) goals of the
monitoring program; (2) site environment and conditions; (3) repeatability of measurements;
(4) measurement-device resolution and operational range; (5) equipment and device dura-
bility; (6) device installation and replacement; (7) remote data acquisition versus manual
data collection; and (8) device maintenance frequency.

Goals of the monitoring program may include process, compliance or remediation
monitoring. Process monitoring is commonly used to determine physical processes for estab-
lishing background and baseline conditions. This may require high-intensity monitoring near
the soil surface to understand periodic changes in data because of seasonal fluctuations. Dur-
ing process monitoring, goals are commonly achieved by strong reliance on data acquisition
systems capable of sustained, high-frequency sampling. Compliance monitoring is generally
performed to confirm waste isolation during operational and post-closure monitoring pro-
grams. Specific goals are normally to test the behavior of various parameters and compare
them to baseline studies. This will ascertain whether contaminant migration or other signifi-
cant events are occurring. Frequent data collection may be decreased to daily, weekly, or
quarterly intervals depending on the individual parameter. As intervals become less fre-
quent, automated systems may be replaced by manual data collections without accuracy loss.
Remediation moniioring tracks the success of any cleanup activities that have occurred, and
can be short- or long-term depending on the site. This type of monitoring usually combines
procedures listed in process and compliance monitoring.

Site and environmental conditions include the soil type and structure; the presence of
rocks; layering; depth to water table; macropores; and any obstruction that would affect in-
strument installation. Seasonally flooded or arid conditions will influence the choice of in-
strumentation, as well as the depth to the water table. Proximity to a city or town, as well as
the availability of AC power should be considered part of the site conditions. This affects the
economics, and the choice of manual or automated data sampling and acquisition. The pres-
ence of AC power increases the flexibility of instruments that can be used on-site.

Any monitoring study, regardless of duration, must have the ability to obtain repeat-
able data measurements. These might include electrical conductivity, soil dielectric constant,
soil-water energy status, pH, and other parameters. The devices used must be able to obtain
reliable, repeatable results.

Measurement-device resolution and operational range must be sufficient to detect
changes in soil conditions. The accuracy and precision of each measuring device must be de-
termined, and matched to monitoring goals. The operational range of each device can be
used to determine its suitability in the overall monitoring strategy; for example, if the soil is
very dry, tensiometers would not be as suitable for measuring soil-water energy status as
thermocouple psychrometers. Devices with very narrow measurement ranges should not be
relied upon in a long-term monitoring program, unless site conditions are well-understood.

Device life-span, and use in long-term systems, must be considered; that is, whether or
not it will extend into post-operational or long-term care periods. If extension into these
periods is not possible, the device will only be suitable for establishing baseline conditions.
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Devices must be compatible with the specific phase of monitoring, operational or post-
operational. Devices or locations where failure could affect the overall integrity of the mon-
itoring program should be avoided.

Because the method of device installation and replacement can affect the measure-
ments of water movement and other parameters, it is important to assess the advantages and
disadvantages of horizontal versus vertical installation for each device. The ability to remove,
repair, and replace equipment as necessary is an important factor in determining initial in-
stallation geometry. For example, at a site where accessibility is easy and long-term, a net-
work of nested devices can be employed by installing them in a caisson of specific diameter
and length (see figure Al.1). Depending on site accessibility, installing extra data-access
ports adjacent to the site can provide flexibility in the event of instrument failure, the need
for replacement, or difficult access after the site is closed.

Remote data acquisition can save valuable time and resources compared to manual
data collection. The economics of the labor costs of manual collection versus the higher
maintenance costs of telephone modems, solar panels, and computer manipulation must be
assessed. Quite often, the maintenance and recalibration of data acquisition systems is com-
plicated by the need to remove a storage module or data-logging device from the field, and
return it to the laboratory. However, for various devices capable of automation, remote data
acquisition is a very favorable option—although manual data collection allows technical per-
sonnel to check on-site equipment and make necessary adjustments. The decision to re-
motely access a site will depend on the type of data being collected, the frequency that it is
needed, the site accessibility, the ability of the remotely accessible device to be incorporated
into the overall monitoring scheme, and other factors.

Device maintenance frequency is an important aspect of site monitoring, as high main-
tenance requirements can affect the long-term viability of the monitoring system and goals,
as well as accuracy and personnel costs. As a result, devices that are actively maintained

Figure A1.1 Diagram of monitoring
island with proposed instrumentation.
The caisson shown in the cross-section
view is constructed of corrugated
culvert pipe. Data from Young et al.
(1996)

Map view
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(such as tensiometers), and devices that require passive maintenance (such as pressure
transducers), are not as useful for long-term monitoring. The overall durability and mainte-
nance requirements for each device must be considered for the monitoring system and goals
to be successful.

Water Content Measuring Devices

Neutron probe The neutron probe works on the principle of neutron thermalization.
It determines water content by releasing high-energy (“fast”) neutrons from a radioactive
source, such as americium-beryllium. The high-energy neutrons collide with hydrogen atoms
in the soil, and form what are known as thermal neutrons. The multiple collisions that take
place form a thermal cloud of neutrons whose size is constant, but whose density is depen-
dent on soil-water content. Higher water content leads to increased thermalization and, thus,
denser thermal clouds. A “slow” neutron detector, installed adjacent to the source emitter,
measures the cloud. The measurement is displayed in the form of a “count ratio,” with a
higher count denoting a higher water content.

Suitability Criteria: (1) possible to merge with other devices; (2) durable (greater than
30 years experience); (3) horizontal and vertical installation possible; (4) after initial tube
installation further monitoring scheme disturbance is not necessary.

Advantages and Disadvantages: (1) widely accepted with highly reproducible results;
(2) contains a source of radioactivity and cannot be automated: (3) expensive (approxi-
mately $8500); and (4) requires calibration. Best method is to vertically install neutron tube
adjacent to site, take measurements at specific intervals, then destructively obtain three sam-
ples directly around the tube in pyramid fashion at each measurement interval. Once this has
been accomplished, the samples can be taken back to the laboratory, placed in an oven, and
dried at 105 °C for twenty-four hours. A regression equation can then be obtained from the
gravimetric water content of the samples versus the count ratio from the neutron probe for
each interval (instructors: see final exam in solution manual).

Time domain reflectometry (TDR) TDR operates on the principle of microwave-
pulse travel through a parallel transmission line (the probe). This technology was adapted
from the electric power industry, where cable testers are used to determine the location of a
break in a power line. The speed of the microwave pulse depends on the dielectric constant
K of the medium that surrounds and is in contact with the probe. Because of the significant
difference between the dielectric constant of water and those of other constituents in soils,
the speed of the pulse down the probe is highly dependent on soil-water content. When the
microwave pulse reaches the end of the probe, the remaining energy is reflected back
through the line. The apparent dielectric constant Ka of the soil can then be determined by

16\*
Ka = (L)

where L is the length of the probe or “wave guides” (cm), ¢ is the transit time (nanoseconds),
and c is the speed of light (cm/nanosecond). The transit time is defined as the time required
for the pulse to travel the length of the probe. Depending on the TDR unit, Ka is either cal-
culated manually or, in some units, internally by the use of a zero/reset button and a visual
display on the unit panel.

Suitability Criteria: (1) possible to merge with other devices; (2) durable; (3) horizontal
and vertical installation possible with some exceptions; and (4) after initial tube installation,
further monitoring scheme disturbance is not necessary.

Advantages and Disadvantages: (1) rapid, reliable, and repeatable; (2) minimal soil
disturbance; (3) probe installation at any orientation; (4) no calibration necessary for rough
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estimates of water content; (§) may be automated; (6) no radioactive source needed; (7) cal-
ibration necessary for accurate water content values; (8) cable length limited to approxi-
mately 50 m; (9) expensive (38500 for cable tester alone); (10) has not been in use for more
than fifteen years; and (11) automation difficult to maintain in field conditions.

Electromagnetic induction (EMI) An EMI device does not measure water content
directly, but measures soil electrical conductivity (mS m™'). Readings are taken manually, or
a data logger is incorporated for multiple readings and storage. Once data is collected, it is
commonly entered into a spreadsheet program or imported into a database. Water content is
then estimated through changes in electrical conductivity. In actuality, the device indicates
the position of the wetting front. The greatest benefit of EMI is to quickly show the wetting
front to depths of 1-2 m, and to detect anomalies in the soil profile, such as incongruities due
to rock or heavy metals, and so on. Therefore, EMI can be an invaluable tool in the final site-
selection and characterization process.

An EMI device contains a transmitter coil that induces circular eddy current loops in
the soil. The magnitude associated with a loop is directly proportional to the electrical con-
ductivity of the soil around the area of the loop. Each loop generates a secondary electro-
magnetic field (emf) that is also proportional to the current flowing in the loop. The emf
induced by each loop is intercepted by a receiver near the transmitter, which amplifies and
forms the emf into an output voltage that is linearly related to soil electrical conductivity. An
example of an EMI plot is shown in figure A1.2.

Suitability Criteria: (1) possible to merge with other devices; (2) durable (several
decades experience); and (3) no installation required (i.e., nondestructive).

Advantages and Disadvantages: (1) rapid, reliable, and repeatable; (2) no disturbance;
(3) only works from soil surface; (4) calibration necessary (device must be zeroed at least
once for each measurement day); (5) cannot be automated; (6) no radioactive source needed;
(7) does not give water content directly; (8) expensive (approximately $6500).

Electrical resistivity borehole tomography (ERBT) ERBT is not a new concept, but
is an extention of surface resistivity. However, technological advances in electronics have
provided a valuable tool for long-term monitoring. An electrical current is passed from

Figure A1.2 Contour map showing
horizontal field response of EM-38
manufactured by Geonics Ltd. Data from
Young et al. (1996)

Horizontal orientation
penetration depth = 4.0 m

50 40 30 20 10 0
Easting, m
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inside a pvc source tube, usually through a series of copper plates, at specific depth intervals,
to a detecting electrode some distance away. The detectors are usually also copper plates at-
tached to a detection device placed within a similar tube. The detector measures the electri-
cal resistivity of the soil, which is the inverse of electrical conductivity. Measurement is a
function of both ionic and water content. Resolution of data is proportional to detection-well
spacing; the lower the soil resistivity, the closer the wells must be. A commonly used depth is
1.5 times the distance between wells. For example, wells 10 m apart should be about 15 m
deep. The data obtained is sorted via a modeling program and yields a three-dimensional plot
of the wetting front. This procedure is valuable for long-term monitoring strategies, but is ex-
pensive. It is currently in use by the United States Nuclear Regulatory Commission on its
Maricopa, Arizona field-studies evaluation site.

Suitability Criteria: (1) possible to merge with other devices; (2) durable (however,
there is limited experience with the new vertical installation and measurement procedure);
(3) flexible; and (4) service not required.

Advantages and Disadvantages: (1) measurements are large scale; (2) valuable for long-
term studies such as landfills and low-level radioactive waste disposal sites; (3) detection
wells should be installed during initial site installation; (4) measurements are not intrusive;
(5) maintenance not required on soil probes; (6) cross-hole measurements must have sophis-
ticated equipment and data analysis; (7) expensive (approximately $10,000); (8) requires on-
site AC power; and (9) commercial units are not readily available.

Matric Potential Measuring Devices

Tensiometers Tensiometers measure the energy status of water in the soil matrix (i.e.,
matrix potential). A tensiometer consists of a liquid-filled, unglazed porous ceramic cup con-
nected to a pressure measuring device (such as a vacuum gauge or transducer). Once the ce-
ramic cup is embedded into soil, soil solution can flow into or out of the cup via small pores in
the ceramic. The flow will continue until the pressure potential of the liquid inside the cup
equals the pressure potential of the soil water around the cup. If the column is completely filled
with liquid, the matric potential will be zero or near zero, and no solution will flow into or out
of the cup. As the soil dries, the solution will flow out of the cup and the top of the column will
recede, creating an air pocket near the pressure measuring device and, thus,a vacuum. The vac-
uum created will be measured as a pressure or negative suction by the vacuum gauge or trans-
ducer. Examples of tensiometers used by the authors are illustrated in figure A1.3.

Suitability Criteria: (1) possible to automate and merge with other devices; (2) durable,
but requires maintenance; (3) less flexible installation; (4) “Sisson” type tensiometer can be

Figure A1.3 Tensiometer design. Small
1T | |«—Tape porous cup diameter (outside) is approxi-
|

Tape |
|72 Water supply tube mately 1 cm. Data from Stannard (1992)
| \ /Measuremen[ tube

Water supply tube /Measurement tube Epoxy

\
&
|
|
l
!
|
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2 Metal plate
el

Porous cup
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~—

Small porous cup design Large porous cup design
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easily serviced and overcomes the depth limitation (less than 2-5 m) of most tensiometers.
The Sisson tensiometer is referred to as the “advanced tensiometer,” and was developed by
personnel at the Idaho National Engineering Laboratory (INEEL). The Sisson design is
shown in figure A1.4.

Advantages and Disadvantages: (1) works only in the moist range (0 to —85 kPa; 100
kPa = 1 bar); (2) nominal cost (approximately $37.00 each, regardless of type) and (3)
frequent maintenance required.

Heat dissipation sensor (HDS) An HDS measures thermal diffusivity by applying a
heat pulse to a heater located within the ceramic cup, then monitoring the temperature in the
center of the cup before and after heating. The measurement system is generally a diode
bridge circuit that measures electromotive force generated by the change in diode tempera-
ture in the sensing element as the heat pulse is applied. The higher the water content, the
greater the thermal conductivity and diffusivity of the soils and hence, the lower the mea-
sured electromotive force. As the soil drains, causing the ceramic to desorb, thermal conduc-
tivity and diffusivity decrease, causing an increase in temperature in the reference matrix
material. An HDS is illustrated in figure A1.5.

Suitability Criteria: (1) possible to automate and merge into a monitoring system; (2)
durable; (3) flexible installation; and (4) not easy to remove or service.

Figure A1.4 Expanded view of
“advanced tensiometer” system.
Data from Young et al. (1996)

Outer casing:
1.0" ID Class 200 PVC

Sieved native
material—
backfilled dry

Inner casing:
0.5" ID Schedule 40 PVC,
or equivalent

Pressure transducer—
two-pair wire
extended to
ground surface

One-hole
rubber stopper

Porous cup—
1 bar, high flow

Sieved native
material—
backfilled in
heavy slurry

Porous ceramic plug Figure A1.5 Heat dissipation sensor

Line heat source
and thermocouple

Q 1.5cm

Thermocouple and heat
source wire leads
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Advantages and Disadvantages: (1) point measurement; (2) relatively new, less than five
years experience; and (3) wide range (10-1500 kPa)—however, some scientists report poorer
results in wetter soils (0-0.5 kPa).

Thermocouple psychrometers These devices are discussed in chapter 9.

Suitability Criteria: (1) possible to automate and merge into a monitoring system;
(2) variable durability with varying soil conditions; (3) flexible installation; and (4) not easy
to remove or service.

Advantages and Disadvantages: (1) complex measurement; (2) low durability; (3) point
measurement; and (4) only operable in dry soils, from 50-3000 kPa.

Soil Solution Sampling Devices

Solution samplers A solution sampler obtains a soil water sample through a porous
wall. The common name for this device is “suction lysimeter.” The solution sampler has two
tubes that enter the device; one is an air pressure or vacuum tube, the other a fluid return
tube. Once installed, a solution sample is easily obtained. A vacuum equivalent to soil pres-
sure is applied via the vacuum tube, and both tubes are clamped or pinched shut. Once the
pressure is equilibrated within the sampler, the clamps on the tubes are removed, a sample
bottle is attached to the fluid return tube, and a pressure exerted on the vacuum tube to push
the sample from the ceramic cup into the sample bottle. These devices come in both single-
and dual-chamber designs, and are made from either ceramic or stainless steel. A dual-
chamber, stainless-steel solution sampler is shown in figure A1.6.

‘ﬁ Figure A1.6 Diagram of dual-chamber
OA::,SZT,S:C Fhuid returi solution sampler. Data from Wierenga et al.
o (1993)

Body tube
A

Soil layer

One-way
check valve

Porous cup
Backfill material

Fluid flow lines
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Suitability Criteria: (1) possible to merge into a monitoring system; (2) durable;
(3) limited installation flexibility; and (4) not easy to remove and service.

Advantages and Disadvantages: (1) not readily automated; (2) small capture area;
(3) limited to shallow depths, usually less than 10 m; and (4) limited to soil water contents
characteristic of 0-50 kPa pressure.

Sampling Wells Sampling wells for saturated zone work may be necessary. However,
many other texts present detailed information on this subject. Therefore, the reader is re-
ferred to Freeze and Cherry (1979).

Suitability Criteria: (1) not easily automated, but possible to merge into a monitoring
system; (2) durable; (3) flexible installation; and (4) not easy to remove and service.

Advantages and Disadvantages: (1) point measurement; and (2) very repeatable.

Pressure Measurement Devices: Differential Pressure Transducers

There are two primary devices used for measuring soil pressure, vacuum gauges and differ-
ential pressure transducers. Commonly, each device is attached atop a liquid-filled column,
which is in turn attached to a porous cup. Because vacuum gauges are relatively older tech-
nology, they shall not be discussed.

Differential pressure transducers are usually four-active-element piezoresistive bridge
devices. When installed, and a pressure is applied, a differential output voltage proportional
to that pressure is produced. This output voltage is commonly measured with a data logger.
A differential transducer connection to the tensiometers illustrated in figure A1.3 is shown
in figure A1.7.

Suitability Criteria: (1) possible to automate and merge into a monitoring system;
(2) fairly durable; (3) flexible installation; and (4) fairly easy to remove and service.

Advantages and Disadvantages: (1) point measurement; and (2) transducers are deli-
cate and require use of data-logging equipment.

Differential transducer Figure A1.7 Differential transducer attachment to
tensiometer shown in figure A1.3

To datalogger

=

1/8"1D X 3/8" OD X —>
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1/8" wall neoprene ; >
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; 1/8" tube X
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Measurement tube from

1/8" OD——> — figure A1.3
RS = -2\l

nylon tubing
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INTRODUCTION

Over the years, we have noticed that an increasing number of students taking our unsatu-
rated zone hydrology courses have come from a broadening variety of scientific disciplines.
Many of these students attend our classes to expand their skills in environmental science.
Some have been out of school for several years, or are retraining in another discipline. A
number of these students have a minimal mathematics background. Consequently, we have
experienced a need to review basic math skills, so students can adequately understand the
material presented in the text. For those readers who need a refresher in mathematics, we
hope that this appendix will serve that purpose.

The basic rules for the arithmetical manipulation of a number system are known as algebra.
They consist of two operations, addition (+) and multiplication (-), and eleven laws relating
those operations to the number system. For any a, b, or ¢ within a number system, the fol-
lowing properties hold.

1. a + b =b + a Commutative Law of Addition
. a-b=>b-a Commutative Law of Multiplication
. a+ (b+c)=(a+b)+ c Associative Law of Addition
. a-(b-c)=(a-b)-c Associative Law of Multiplication
a-(b+c)=(a-b)+ (a-c) Distributive Law of Multiplication over Addition
There exists a number a such that a + b = b (and a = 0). Existence of 0, the additive
identity
7. There exists a number a such thata-b =b-a = b (and a = 1). Existence of 1, the mul-
tiplicative identity
8. For any number g, there exists a number b, for a and b # 0, such thata - b = 1 (and
a = 1/b). Existence of reciprocals
9. For any number a, there exists a number b such thata + b = 0 (and b = —a). Existence
of negative numbers
10. If a is in the number system, and b is in the number system, then a + b is in the number
system. Closure under addition
11. If a is in the number system, and b is in the number system, then a - b is in the number
system. Closure under multiplication
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These laws enable one to structure a problem in such a way that it can be solved quickly
and consistently. For example, 4 + 7 + 3 can have two different answers depending upon the
order in which it is solved, since division is not associative. However, if the problem is stated
as 4-(1/7) - (1/3), the answer remains the same no matter what order one chooses to solve
it. Likewise, 4 — 7 — 3 can have two different answers depending upon the order in which it
is solved, whereas 4 + (—7) + (—3) is consistent. It is these laws of algebra that dictate how
equations are set up and solved in the most advanced forms of mathematics.

The smallest algebra possible consists of two numbers (0,1) arranged in a matrix to
meet the eleven stated requirements. However, that algebra is of little or no consequence to
the applied sciences. The next-smallest number set that meets those requirements is the set
of rational numbers. Unfortunately, that set does not contain such important numbers as 7 or
e, or even V2; but those numbers are contained in the real number system, which is the num-
ber system that will be used as a basis for this review. The complex number system, which
consists of the real and imaginary numbers (imaginary numbers are those that must be de-
scribed in terms of i, or V—1), also forms an algebra. Although the complex numbers are of
considerable importance in fields such as electrical engineering, the real number system is
the one that is of primary importance in most applications.

SOME BASIC DEFINITIONS

Since mathematics is the language of numbers, it might help to review some of the basic
definitions.

variable A variable, which is usually represented by a letter of the Roman alphabet, can
take on more than one value; or it may represent a single value that is yet to be
determined. In the equation 3x + 2 = y, x is the independent variable, and y is the
dependent variable.

operator A symbol that is used to denote a mathematical manipulation (operation). In
essence, operators are mathematical shorthand: +, —, X, =,V , f ,V,and ¥ are
all examples of operators. Likewise, the use of a superscript is a common opera-
tor. When one sees x’, one knows that it is shorthand for the operation
bR S X dbil A

function A combination of operators, numbers, and/or variables that lead to a single value.
In many cases, the exact mathematical expression may not be given, because it
varies considerably or simply is not known. f(x) indicates that the function f in-
volves operations on the single variable x. G(x, y, z) indicates that the function G
involves operations on three variables. Neither of these examples gives an indi-
cation of the operations to be performed on the variables, only the number of
variables involved. However, each function will have only one value for each set
of variables. For example, if G(1,3,2) is a function, it takes only one value for that
number sequence (1, 3,2). It may have the same value for some other set of num-
bers, but for the sequence (1, 3, 2) it must always take the same value. It cannot
be 7 on Wednesdays and 12 on Fridays; once a value is assigned to a sequence of
variables in a function it must remain constant for that sequence of variables.
That strictness of definition is not always recognized in the physical sciences, but
is dealt with by using a little common sense. As an example, consider Kepler’s
third law of planetary motion. The law can be stated mathematically as
T? = (47%a>/GM); where T is the time for the period of the planetary orbit, a is
the mean orbital radius, M is the mass of the planet, and G is the universal gravi-
tational constant. By algebraic manipulation, the equation can be expressed in
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such a way as to show any of the variables as the dependent variable:
4r’a’\1? T°GM\'? 4m’a’
r=(Gr) o= ()

GM ) SRR :(GTZ) (A1)

Of the three equations given, two are functions and the other is not! T can have two
possible values for any set of values for the independent variables a and M: the negative and
the positive square roots of the equation. However, if the problem is set up with the under-
standing that T can only take positive values, the equation can become a function. (M, a) is
a function for 7' > 0.

L)

monomial A monomial in x is of the form cx”, where 7 is a nonnegative integer
and c is a constant; for example, —3x°, 4x, 7x'%

polynomial A series of monomials added together is a polynomial; for example,
Tx2 — 35 + 4x.

linear polynomial A polynomial is linear if it has the form ax + b, where a # 0.

quadratic polynomial A polynomial is quadratic if it has the form ax® + bx + ¢, where a #
0. The roots of a quadratic polynomial can be found by using the
equation [—b = (b* — 4ac)'?]/2a.

cubic polynomial A polynomial is cubic if it has the form ax® + bx? + cx + d, where
a#0.

Equations are often plotted using the Cartesian coordinate system. When a linear poly-
nomial of the form y = mx + b is plotted with Cartesian coordinates, m is the slope (tangent)
of the line, and b is the y-intercept (the value of y where the line crosses the y-axis). Likewise,
for any two points (x;, y;), (X,, y,), the slope of the line between them is m = (y, — y,)/
(x, — x;) = Ay/Ax. Changes in b only move the line up or down the y-axis.

Although this definition of a tangent applies to straight lines, and the tangent of a curve
can be found through differential calculus, there are often circumstances where the tangent
to a curve can be approximated by a line. For that reason, it helps to understand calculus; one
can approximate the tangent of a line at just a glance. It also helps one to recognize errors in
calculation. Figure A2.1 gives an idea of the ranges of values for the tangents of lines.

Undefined Figure A2.1 Tangent lines
) -6.0 —12.0 120 60 4, o of the Cartesian coordinate
35l Yas system
-2.0 20
-15 15
-1.2 5

-1.0 1.0
-9 o
-8 "
-7 7
-6 B
_s s
-4 i
-3 .
_a )
=21 1
g 0

Values of Ay/Ax
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TRIGONOMETRIC RELATIONS

The following discussion utilizes the diagram in figure A2.2. The radius of the circle, , is
100 mm; the area of the circle is 77 the circumference of the circle is 27r. Angles can be
measured in either degrees or radians, and there are 360°, or 27 radians, in a complete circle.
Let o, = angle measured in radians, and @, = angle measured in degrees. The relation can be
described by: «°/360° = a,/27r. This relation allows one to convert degrees to radians, or ra-

dians to degrees, for any angle. In figure A2.2,a°/360° - 27 = a,,and a, - r = z.The area of the

=i 1 . . 3
wedge is 3o,r* = 3z - r. It can readily be seen that angle measurements in radians are

important in measuring areas, and areas of portions of circles.

Trigonometric Functions

Considering the triangle formed by the radius 7, height y, and base of length x, the trigono-
metric functions are as follows.

sina = y/r

cosa = x/r

tan a = sin a/cos « = y/x, undefined for vertical line, « = 90°, 7r/2 rads
csc e = 1/sin a = r/y, undefined for horizontal line

sec a = 1/cos a = r/x, undefined for vertical line

cota = 1/tan a = x/y, undefined for horizontal line

The area of the triangle is 5 xy.

Pythagorean theorem: x* + y? = r,

y Figure A2.2 Relation of
trigonometric shapes
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The length of the chord (secant segment) labeled s can be found by using the law of
cosines: s> = 2r® — 2r*cos @ — 5* = 2r}(1 — cos a) = s = r(2(1 — cos a))*for s = 0.
The area of the triangle formed by the chord and the two radii is § yr.

The area within the arc and chord is 3 zr — 3 yr = 2 r(z — y).

Important Note: If any value for an angle is not specifically given in degrees, it is
assumed to be in radians. For example, sin 30 is assumed to be sin 30 rads, not sin 30°!

The following laws and identities are basic, and are not restricted to figure A2.2.

For any triangle with sides of length 4, b, and c, if 6 represents the angle opposite side c, then
c? = a® + b* — 2ab cos 6.

For any triangle with sides of lengths a, b, and c, if 6 represents the angle opposite c, a repre-
sents the angle opposite a, and 3 represents the angle opposite b, then a/sin a = b/sin 8 =
¢/sin 6.

For any «, B, 6 (except as noted), the following hold.
sin @ + cos?a = 1

sin (—6) = —sin 0

cos (—0) = cos 6

sin (@ — ) = sin a cos B — cos a sin B

cos (@ — 3) = cos a cos B + sin a sin B

sin (a + B) = sin a cos B + cos a sin 3

cos (o + f8) = cos a cos B3 — sin « sin B

By substituting 90° (/2 radians) for « in the preceding four equations, we obtain the

following.

sin (90° — B) = cos B
cos (90° — B) =sin B
sin (90° + B) = cos B
cos (90° + B) = —sin 3

If o = B in those same four equations, then the following is true.

sin (2a) = sin a cos @ + cos a sin a = 2sin & cos a

cos (2a) = cos’ @ — sin’ a

Dividing sin* @ + cos® 6 = 1 by sin?  — 1 + cot® § csc? 6
Dividing sin*  + cos* @ = 1 by cos? 6 — tan’> 0 + 1 = sec? @

All of the useful trigonometric identities can be derived by similar substitutions, but

these are the most important.

GEOMETRIC RELATIONS

The area of a triangle is 3 bh, where b is the length of the base and # is the triangle’s height.
Please note that 4 is the same length as the triangle’s leg only in the case of a right triangle.

A right triangle is one in which one of the angles is equal to 90°.
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The total inside angles of a triarigle sum up to 180°.

An isosceles triangle is one in which two of the sides are equal. Note that by the law of
sines, that means that two angles are equal also.

An equilateral triangle is one in which all three sides are equal. Once again, by the law
of sines all three angles must also be equal, and therefore each is 60°.

The total area of a polygon, as well as the measurements of its inside angles, can be
determined by constructing a series of triangles within the polygon and using the above
relations. iy ‘

A parallelogram is a four-sided polygon with its oppoSing sides parallel and equal in
length. It can be formed by two identical triangles, therefore its area is 2(3b%) = bh. Its inside
angles total 2 - 180° = 360°. Squares and rectangles are special cases of parallelograms.

An ellipse has the algebraic form x*/a® + y?/b* = 1; where a is the length from the cen-
ter of the ellipse to its furthest point (also known as the “semi-major axis”), and b is the
length from the center of the ellipse to the closest point (also known as the “semi-minor
axis”). (This definition assumes that the widest portion of the ellipse coincides with the x axis,
which is conventional.) It can also be seen that when a* = b?, the equation of an ellipse re-
duces to x> + y* = a* which is the equation of a circle; showing that the circle is a special case
of an ellipse. The geometric definition of an ellipse is that it is a set of points such that the sum
of the distances of each point froih two fixed points is a nonnegative constant. The two fixed
points are known as the foci. It is that definition that leads to the traditional means of con-
structing an ellipse by using two thumbtacks, a length of string and a pencil. One focus lies on
each semi-major axis, and each is the same distance from the center of the ellipse. If the dis-
tance of each focus from the center is given as c, then the axes and foci are related by the fol-
lowing equation: b* + ¢* = a%. Once again, in a circle, ¢ reduces to zero since the foci coincide
at the center. A line that is tangent to an ellipse at any point will form the same angle to a line
drawn to either of the two foci. The area of an ellipse is wab.

Volume of an elliptic cylinder = wabh (where 4 is the height)
Volume of a cone = : 7.

Surface area of a cone = 77l (where [/ is the distance along the edge of the cone from
its apex to its base).

Volume of a sphere = 3 77°.
Surface area of a sphere = 4 772,

POWERS AND ROOTS

One area of mathematics that is actually algebra, but is difficult enough to cause problems
even for those who may have taken calculus courses, is the concept of powers and roots. The
following rules are basic to an understanding of the subject.

gl

¥ =x

L=x-x

xnle.xzu cee .xn

LetVa =x,thenx"=a=x,-x,- - - x,,and x = a'/"

x " =1/x"

Letr=x"s=x"thenr-s=x"""

Gy =

For any y > 0,x > 0, there is some number 7 such that x" = y. This fact leads to the con-
cept of logarithms.
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LOGARITHMS

For all ng’ihbers greater than zero, logarithms provide a simplified way to deal with powers
and roots. Logarithms are expressed in terms of a base. In the example given in the last sen-
tence of the previous paragraph, n would be the logarithm of y in base x. The mathematical
expression would be log, y = n.The two most common bases for logarithms are 10 and e. If a
number is expressed as log y, it is understood that it is meant as log,, y. If a number is ex-
pressed as In y, it is understood that it is meant as log,y. Therefore, log y = n means that
10" = y,Iny = n means that e” = y. Some of the rules that apply to logarithms are as follows.

log,x =1

log, x* =a N

log xy = log x + log'y

logx/y =logx — logy
The relation between In and log (log,,) is as follows

In 10 = 2.30258 . ..

62'30258 =10

e = 1004454 (since 1/2.30258 . . . = 0.434294. . .)

log e = 0.434294 . . .

For any x > 0,In x = 2.30258 log x.
This relation is extremely important in the physical sciences. When a differential equation is
solved, the answet: is often expressed in terms of In, but experimental data is more conve-
niently plotted on log,, graphs.

CALCULUS

Differential and Integral Calculus

There are two essential areas of calculus. One is known as differential calculus, and is con-
cerned with finding the tangent to a curve at a particular point. The other is known as integral
calculus and is concerned with finding the area beneath a curve between two points.
Although this is a simplification in two dimensions, if one remembers to look at calculus in
this simple way it can help to make some problems very easy to solve. That is especially true
in the area of applied calculus.

As stated above, differential calculus is concerned with finding the tangent to a curve at
a point. The slope of a tangent line at a particular point on a curve is the instantaneous rate
of change. The slope of that line is known as the derivative of the equation. The mathemati-
cal representation for that instantaneous rate of change, or derivative, is dy/dx. Remember
that Ay/Ax is the representation for the slope of a straight line. There are times when a
curve does not change dramatically over a distance; in such an instance dy/dx may actu-
ally approach Ay/Ax, making it easier to approximate dy/dx without knowing the actual
formula of the curve. That is very important to a scientist, since the actual formula for an
experimentally-derived curve may be solvable only through numerical analysis of data.
There can be many instances where a scientist may want approximate values before spend-
ing long hours developing a computer program to analyze data. A scientist may also desire to
assess the data presented by someone else without spending huge amounts of time.

The integral for a curve between the points @ and b, which is the area within (beneath)
the curve between those points, is represented by [. In the Cartesian coordinate system,
it would be represented by [° (equation of curve) dx. The representation that shows the
two points between which the curve is being evaluated is called the definite integral. The
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indefinite integral | (equation) dx, is also called the antiderivative. That is because it undoes
the effect of the derivative. The integral of a derivative does not always yield the original
equation completely, but it is close enough for the purposes of calculus. It is not the intent of
this discussion to go into an explanation of integrals or derivatives, so if a more rigorous ex-
planation or review is needed there are literally scores of calculus books available in any li-
brary. The important concept here is that a definite integral represents the area beneath two
points on a curve, and the antiderivative “undoes” the effect of the derivative.

If one knows the exact equation of a function, the finding of a derivative at a particular
point is a mathematical exercise in differential calculus. However, the purpose of performing
experiments is to find unknown values. An experiment may obtain a whole series of values
that can be linked together in a curve sketched by the researcher, but unless the curve is very
simple it may not be easy to identify its underlying mathematical equation (function). What
is a researcher to do in order to find the equation, or its derivative at a certain point? A
French engineer named Fourier established that a curve (or even a series of segments of
curves) of any shape can be matched against segments of trigonometric functions (sine or co-
sine), as long as the curve is a function. But Fourier analysis is not a simple exercise to be un-
dertaken with a notepad, pencil, and hand calculator. If all a scientist needed was a value at
a particular point, it could be read from the curve and no further calculations would be
needed. Yet, quite often the scientist needs to find the derivative at a point, or the derivatives
at several points. When a rough approximation is adequate, dy/dx can be obtained by using
the chart given in figure A2.1 and finding the value of Ay/Ax that most closely matches the
slope of the curve in the immediate vicinity of the point.

The value of the definite integral can be approximated by plotting the curve of experi-
mental data on quadrille paper and determining the number of squares contained under the
curve between the two points. In calculus texts one might find such methods of approxima-
tion listed under the category of “trapezoidal approximation.”

Consider the task of designing a mathematical function that will describe a trip from
the Colorado capitol building in Denver to the summit of Mount Evans (figure A2.3). The
capitol will serve as a point of origin, East-West will be the x-axis and geographic North—
South the y-axis. It will be impossible to describe the trip as a function in terms of either x or
y alone, because the road loops around with various switchbacks as one travels in the moun-
tains; as a consequence East—West or North—South lines can be drawn in such a way that they
can pass over the road several times. One may be tempted to make the assumption that the
trip can be described in terms of x and y, or f(x, y), as the exact mathematical equation is un-
known. But consider what happens when one encounters a cloverleaf intersection. The vehi-
cle turns steeply to the right and within a few seconds one is at precisely the same coordi-
nates as a few seconds before—but not in the same place. The vehicle is approximately
eighteen feet above where it was. The contemplated function f(x, y) gives two values at one
point; therefore, it cannot be a function after all. In order to meet that difficulty, the function
can be changed to f(x, y, z), with z the elevation above, or below, that at the capitol. One
still does not know the exact mathematical equation for the journey, but a specific set of
values (xy, y;, z;) will give just one location, so there is a function f(x, y, z). For any set of
values, one can find the exact position on a topographic map. The topographic map is a two-
dimensional representation of that three-dimensional function. The mathematical equation
will be tremendously involved and very difficult to determine. Now consider the following
philosophical question: Do you really need to know the exact mathematical expression in
order to understand the function, or do you actually understand the function better without
knowing the exact mathematical expression?

Next consider what is involved in the trip back down from the summit of Mt. Evans.
Suppose that one lane has been closed for construction so that the trip back down exactly
retraces the route up for at least part of the way. Given a set of coordinates (x;, y;, z;) that
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Figure A2.3 Mount Evans, 45 km

west of Denver, Colorado (not to
+ scale). Draw imaginary x- and y-axes
through highway 5 in proximity of the
summit of Mount Evans. If the y-axis is
drawn in the appropriate location, one
will observe that for each x, there can
be multiple locations along y, and vice
versa. Map scale is 1:100,000. Source:
United States Geological Survey. Map
name: Denver West—Colorado

Denver

falls somewhere on that section of road; what does f(x;, y;, z;) give for an answer? Is the
vehicle on its way to the summit or on its way back down at that point?

There might be a temptation to suggest that time is another variable. But then what
happens if the occupants of the vehicle stop to admire the view, or are held up in the con-
struction zone? Or what if someone left a pair of binoculars behind, and the vehicle turns
around and heads back up again? If someone told you that it was precisely three hours,
twenty-seven minutes and fourteen seconds since the vehicle left the capitol, could you give
its exact location? It is obvious that time alone is not what is needed. Reconsider for a mo-
ment the question that must be resolved. One only needs to determine whether the vehicle
is moving in the direction toward the summit or away from it. Movement implies change in
position with time. This is the same as finding a derivative in calculus. In a one-dimensional
problem along the x-axis, this would be solved by finding the derivative dx/dy or dx/df; but
this is a three-dimensional problem. You might find a short distance where the road is com-
pletely level and heads precisely North-South or East-West, but at most times it will not.
Consider for a moment what happens when there is vertical change. Unless the driver pro-
pels the vehicle over the edge of a cliff there will always be a considerable rate of change
along at least one of the other major axes. The variables are interlinked in the underlying
function. Change cannot occur in z without change also occurring in x or y (in this case).
Even in the x-y plane there are many sharp curves and changes in direction, so their relation
is much more involved than that of a straight line, mx + b = y. Even if the vehicle were to
move at a constant velocity relative to the road surface, its rate of change with respect to any
of the three axes would change constantly. If one considered the rates of change along each
of the three axes at a particular point, while keeping each of the other variables a constant,
one would have found the partial derivatives:

LA (A22)
ax’ ay’ 9z '
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The tangent to the curve of the road at any point is the set of partial derivatives at that point.
In the example given above, if time enters into the format, the relation between the regular
derivatives and the partial derivatives would be as follows.

df _sfdv ofdy  of dz

dt dx dt 9y dt 9z dt LA

The instantaneous rate of change, df/dt, is the velocity of the vehicle relative to the road sur-
face, and dx/dt, dy/dt, and dz/dt are the regular derivatives relative to the respective axes.
The velocity has components that could be measured going off in any direction; the function
given above shows where the velocity is greatest—along the path that the vehicle is follow-
ing. If the vehicle were to follow a straight, level path along an East-West line, then there
would cease to be y and z components and there would be no partial derivatives, and df/dt
would be equal to dx/dt. This lengthy discussion has led to the subject of vector calculus.

Consider for a moment a pollutant moving through the soil or air. It is not possible to know
the exact mathematical equation that governs the pollutant’s movement, but it is possible to
measure its movement at any one point (i.e., as through Ax in figure A2.4). There are an infi-
nite number of points at which the pollutant’s movement can be measured. At each one of
these points the partial derivatives (the direction of movement measured as components of
the three axes) may be different. Taken together, these points are known as a gradient field.
The set of partial derivatives at any given point is known as the gradient. The mathematical
symbol for the gradient is grad f(x, y, z), or more commonly as Vf(x, y, z). It is vital to re-
member that it is possible to know by experimental measurement the value of V£(x, y, z) at
a point without knowing anything at all about the underlying function f(x, y, 7).

Nabla (in older usage; del, or del operator in newer usage), symbolized by V,is the most
important operator in applied vector calculus. Vf(x, y, z) = grad f(x, y, z) is the gradient, or
the set of partial derivatives at a point. V - f(x, y, z) = div f(x, y, z) is the divergence. (V - is
read as “nabla dot”). V X f(x,y, z) = curl f(x,y, z) is the curl. (V X is read as “nabla cross”).
An extremely simplified explanation of this notation is: Vf(x, y, z), which is the tangent to a
gradient field at a particular point (the direction of the maximum rate of change broken into
its three components). V - f(x, y, z) is the normal to the gradient field (the rate of change 90°

F+ %_Fz s Figure A2.4 Flux across an interval, Ax, within a

Fy+ %E)’ dy three-dimensional box
y

— - F +a—FxAx
dx

x
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to the gradient field, or the expansion of a field at a particular point). Once again, it would
be broken into the three components. If the field is confined within boundaries, then V - f(x,
¥,2) = 0.V X f(x, y, z) can be considered to be the measure of rotational motion about a
point in the gradient field. (Another important, but complicated, use of V is V2£(x, y, z), the
LaPlacian of a function. The LaPlacian combines the important mathematics of differential
equations and vector calculus.)

The actual calculation of these vector quantities using the underlying mathematics
would be very difficult. It is very fortunate that the quantities can be measured without even
knowing the underlying equation. This very short discussion of vector calculus should enable
you to understand what would otherwise be very intimidating mathematical formulas that
you will come across. A short example follows. Take a look at it, and see if you can interpret
it by yourself.

aa—i” =V:(DgV6) + V- (D VT) + E (A2.4)
This equation simply says that the partial derivative with respect to the variable time (you
will note that it is not concerned with any of the other partials) in the function 6, is the sum
of the other three entries. The two V - components are the expansion of the formula con-
tained within the brackets. Although we do not have the benefit of knowing what each vari-
able stands for, the way that they are being used, as well as their being upper case letters,
would seem to indicate that each letter represents some equation that is unknown to the per-
son who created the formula. Therefore, each of these components represents an experi-
mentally derived number that the individual believes to be a function, as indicated by the use
of capital letters. VT would represent the temperature gradient, a number that should be eas-
ily obtained. Likewise, V6 represents some measurable gradient. Even without knowing what
each of the variables means, the overall equation is going to be easily solved. Once the nature
of the function is understood, an experiment can be designed to derive an answer, and you
will not have to be an expert mathematician in order to solve it!

Differential Equations

One of the most common experimentally obtained results is known as the ordinary differen-
tial equation. A differential equation occurs when a measured rate of change is equal to a
function of its variables: dy/dx = f(x, y) is an example of how this might be represented in
mathematical notation. Differential equations can get very complicated, so this discussion
will center on the easiest and (fortunately) most common type, the form dy/dx = ky, where
k is some constant. By separating the variables one obtains dy/y = kdx. Taking the anti-
derivatives of each side, [dy/y = [kdx — In | y| = kx + c. This can also be expressed as
y = "¢, or y = ce’*. If one knows the initial condition, one can solve for c.

An equation of the form y = ¢* is a hyperbolic function. The slope of its curve changes
very dramatically when plotted using Cartesian coordinates. That makes it very difficult, if
not impossible, to solve the equation by plotting it on a standard graph. Fortunately, that
problem can be overcome by plotting the data on semilogarithmic graph paper. A function of
the type under discussion will yield a straight line when plotted on semilogarithmic paper.
The semilogpaper is ruled using base 10 cycles (each cycle corresponds to 10 times the value
of the previous cycle), but the differential equation is expressed in powers of e. The difference
in expressions can be resolved by remembering that very important relation between log and
In:Inx = 2.3 log x. If that relation is not etched into your memory already, it is a good idea to
have it written down in a convenient spot. Whenever you are plotting data on logarithmic or
semilogarithmic graph paper in order to solve a differential equation expressed in terms of
In, you will need to substitute 2.3 log x for each place that In x appears. If you remember that
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relation, it becomes a very simple matter to solve such problems graphically. Consider the
differential equation yAt = In x, — In x;. This can be simplified to yAt = In x,/x;,0or y =
(2.3/At) log x,/x;.If x, = 10x,, then the equation simplifies to y = 2.3/At, and you have only
to read the difference in ¢ across that same cycle in order to solve the problem.

There are also partial differential equations. LaPlace’s equation, V*f(x, y, z) = 0, is an
example of a partial differential equation. It is of some importance in solving physics prob-
lems, so a few of its forms are given here:

R 0 (A2.5)
of of of

ox (ax> ay (ay> 9z (az> b ez )

divgradf= 0 (A2.7)

V-V=0 (A2.8)

The subject of partial differential equations is very involved, and well beyond the scope
of this short mathematics review. The most important thing to remember is that partial dif-
ferential equations are, as a rule, more complicated than ordinary differential equations, but
they still have solutions.

A simple example follows. Find a solution for the LaPlace equation

*f I o
§+8_))2+6_22:0 (A29)

There are an infinite number of solutions for the equation as is stated in this simple form. A
simple solution that should be intuitively evident is x> + y* — 2z% = f(x, y, z). To verify, we find

of of of
o 2x, 3y 2y, 3z 4z (A2.10)
Then,
i<af> = i<a—f) =2, i<if> = —4 (A2.11)
dx\ox ay\ady 0z \0z
so that
Sl @ OO

— =+ —

o2 g a2t AEds 0 (A2.12)

establishing that our intuition was correct, and the equation is a solution to the LaPlace
equation.

It should be evident that an infinite number of functions are solutions to the LaPlace
equation. In fact, they form a subset of all possible functions. Keep in mind that LaPlace
equations are not all as easily recognized as the one given above.

When vectors are written out, they are conventionally given in terms of i, j, and k. These are
the unit vectors in the three axis directions, and using 7, j, and k avoids any confusion with the
variables x, y, and z. If a vector can be expressed as xi + yj + zk = v, then ]v[ = (& +
y? + z9)'2 is the magnitude of the vector. The dot product of two vectors u and v is
u-v = |u||v| cos 6, where 6 is the angle between the two vectors. The dot product is there-
fore a scalar, or a nonvector number. The cross product of two vectors is another vector. If u
X v = w, then |w| = |u||v|sin 6, where 6 is the angle between u and v. Suppose that

=ai + bj+ ckandv =di + ej + fk. Then,u - v = ad + be + cf,u X v is more complicated.
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It can be expressed as the minors of the determinant:

i j ok
a b c (A2.13)
d e f

which is (bf — ec)i — (af — dc)j + (ae — db)k.

Once again, this is intended as a very brief review of the subject. The review problems
at the end of this appendix should help prepare you for the course, and help you remember
prior mathematics course work. We will begin with a (fanciful) example of some theoretical
mathematics, then some easy questions, followed by more difficult problems that come from
actual experiments. If you run into difficulty, consult any mathematics book at your disposal.

THE TASTE FUNCTION

Suppose that you have decided to make blueberry pancakes for breakfast, and while doing
so it occurs to you that there may be some “taste function” that could exactly describe how
you want your pancakes prepared. Is there such a function? Think for a moment: If you could
control all of the variables that you might think of, would your blueberry pancakes taste ex-
actly the same each time that you made them? The answer should be yes, or at least that is
the presumption made by cookbooks. If you used exactly the same ingredients, mixed to-
gether in exactly the same way in the same ratio, cooked in the same pan, over the same heat
source for the same amount of time—if you controlled all of the variables—then you would
certainly expect the same results each time. It is reasonable to make the beginning assump-
tion that there is a taste function. We can test that assumption by designing a recipe that we
will use each time. However, if the same recipe gives us two different results—if the pancakes
taste wonderful one time and horrible the next—then it is not a function. (Unless, of course,
you have a physiological problem that affected your taste buds, but that is just a problem
with the subjective nature of measuring our taste function.)

Let us assume that there is such a taste function. We are all scientists; how would we de-
scribe the function in a mathematical sense? First, we would assign some representations for
the variables that we believe control the taste of the blueberry pancakes. We could call the
blueberries b, the pancake mix p, the milk 7, and the eggs, e (this is a hypothetical mix, by the
way). There will be a specific amount of each ingredient that will be used in the mix, and then
the ingredients will be added together. So far this is simple algebra, but since we have not yet
determined the amounts, the mix will be abbreviated as f(b, m, p, e). Next, we will want to stir
the mix. To simplify things a bit, assume that we are going to slowly pour the ingredients into
a bowl while stirring, and that as we stir the mix, it is pouring out of a hole in the bottom of
the bowl into a second bowl. The movement of the mix through the first bowl is a gradient
field; you could theoretically measure its rate of movement with respect to any of the three
axes. The rate of movement toward the second bowl at any one time at any one point would
be the gradient, or Vf(x, y, z). The mix would be rotated by our stirring it, so that there is a
rotational component to the movement of the mix through the bowl. The amount of rotation
about any point would be represented by V X f(x, y, z). Would there be a V - f component?
Not really; the mix is constrained by the boundary of the bowl—it is prevented from spread-
ing outward by the sides of the bowl. Suppose that we get to actually heating the pancake.
The heat moves upward through the pancake, but it also moves outward as it’s moving up.
V - f(x,y,z, T, 1) is the theoretical expression for that vital component of the taste function.

You can see that we used a mathematical shorthand to describe what is actually a very
simple act. If you were to string the components together to form a taste function, it would
look very intimidating to a person unfamiliar to the procedure, or unfamiliar with the nature
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of your variables—and this is not even a well-thought-out model! Do not let the strings of
mathematical symbols intimidate you. Think of the equations as abstract shorthand rather
than as an actual equation that you have to solve. These equations from vector calculus are
just another scientist’s way of expressing what he believes to be happening. Feel free to ques-
tion the logic that was used by the scientist.

MATHEMATICS REVIEW PROBLEMS

Answers to these problems are given in the instructors solution manual

A2.1. How would you go about establishing that the following formula is, or is not, a function?

- D@ y(a) (@))2 D ()
v, D (D) ad D s X 18
- E: _ Yw Z 4dple > 2 p - J' dD(“)]————-—o A2.14
Q. 4 U; € 2 aT J, € (3.286 A)* N, ( )

a=1

where D® is the electric displacement at phase «; € is the dielectric constant of water; T is tem-
perature; s is surface area per gram of sample (m?g™'); N, is Avogadro’s number (6.023 X 10%);
and v,, is the partial volume of water.

A2.2. You discover a scientific paper in which the author states that the abilify of a soil to conduct
water is dependent upon three factors: (1) The price of pretzels in Poughkeepsie; (2) the number
of hairs on the bearded lady’s chin; and (3) the number of goats on Old McDonald’s Farm. Do
you consider it likely that this really is a function? Why or why not? How would you go about
proving or disproving it? (Although the topic may sound laughable, be as specific as possible in
answering the last part of this question.)

A2.3. In order for an equation to be differentiable over an interval, it must be both a function, and con-
tinuous over the interval. (The difference between [ and X is due to the difference between con-
tinuous and discrete phenomena. The amount of space contained within a jar would be deter-
mined by using [, because one cannot “count” the space even though it is a very small number.
The number of stars contained within the universe would be expressed by using 2, because even
though the number may be infinite, it is still countable—if you lived long enough and could count
that high.) Most of the models that are used in this course are calculus-based, with plenty of dx,
J,9,V, and their friends. If you could slice a cross-section through the area of flow, would the flow
of water through a boulder field be continuous? What about a layer of cobbles? Of gravel? Of
sand? Obviously, there are an infinite number of points where the water flow could not be mea-
sured under each of these circumstances. Yet water flow is one of those factors that is described
by using calculus. The question here is, are all of these scientists daft or is there some reason to
use calculus to describe a discontinuous function? (This is not a mathematical question, but a
logical one. Approach it as would a philosopher.)

A2.4. One of the most important measurable quantities encountered during this course is the hy-
draulic conductivity of soils—their ability to allow water to be transmitted through them. Henry
Darcy designed an apparatus to measure K, the hydraulic conductivity, by filling an enclosed bed
with sand and measuring how fast the water flowed through the pipe (chapter 7). What impor-
tant mathematical operation was negated by this experimental design? Do you think that this
might have some effect upon the experimental results?

A2.5. Darcy’s experiment required that the soil be saturated in order to measure hydraulic conductiv-
ity. The measured result, called the saturated hydraulic conductivity, is represented by K. One
method of measuring K is known as the “falling head method,” (you will be spared the details
of the method for now, but you can practice the mathematics that are involved). Suppose that
K, = —a Az dH/H dtA, where a, Az, and A are constants. Let H,, be the value of H at #,, and H;
the value of H at ¢,. Show that K| = 2.3a Az/t;A when H; = 10H, and ¢, = 0. This is an ordinary
differential equation. If you find this problem difficult you may want to review your mathemat-
ics a bit more. This type of differential equation is normally explained in the first or second se-
mester of calculus.
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LetAz =12 cm,a = 0.2 cm? A = 50 cm?, H, = 30 cm. You perform an experiment and obtain the
following results.

¢ (in minutes) 1 5 10 15 20 30 40
H (cm) 28.8 273 25.0 23.1 211 17.6 15.0

Solve this by graphing the results and using the appropriate formula from problem A2.5. Express
K, in cm sec™l,

Another important property encountered in this course is diffusivity (see chapter 8). We will use
the laboratory method of Bruce and Klute for obtaining diffusivity values to practice practical

mathematics. The Bruce and Klute method uses the equation

1 (dx\ %
Do) = ——(Z J xdb A2.15
@) =5 (%) (a215)
where ¢is time in seconds for the entire experiment to be performed; 6 is the water content of the
porous medium at a sample location (it is a percentage, and therefore unitless); and x is the dis-

tance (cm) of the sample from the water source. An experiment obtains the following results.

X 0 1 2 3 S 10 15 20 25 30 32 33 35
0 44 43 44 43 42 40 38 .36 35 .30 24 18 .02

0;, the water content of the initial “dry” soil, is 0.002; ¢ is forty-five minutes. What is the diffusiv-
ity (D(0")) when the soil has a water content of 40 percent? When it has a water content of 33
percent? 25 percent? (6, is shorthand for “the value of 6 at x.”) This problem is easy to solve if
you remember the definitions of [ and the derivative. Final hint: solve it graphically. Feel free to
use the values of dy/dx, and a light table, if you need to.

As an unsaturated-zone scientist with good mathematics skills, you have been asked to review
the paper of a prominent scientist who made a slug test of a well in an unconfined aquifer. Being
conscientious, you actually work through the mathematical formulas given, rather than simply
peruse them and accept each at face value. Upon your initial reading, you detect that the author
chose the wrong formula to integrate, of the two formulas given. You will need to simplify these
formulas, and express both so that K is the dependent variable, and y is the independent variable.
Underline in an introduction to your answer the basis for your selection of the correct formula
that should be used, i.e., either A2.16 or A2.17.

The equilibrium equation for a confined aquifer is

AR © TN &
T o — In <rl) (A2.16)

and the equilibrium equation for an unconfined aquifer is

ST 0 e}
K = [ — 7] In <r1) (A2.17)

where T = Kb;h, — h; = y (and h, = b).

(a) Integrate both equations given in problem A2.8; you will likely want to consult a table of in-

tegrals in order to do so. (b) What is the difference in the results given by the two equations (ie

K will be understated by a substantial percentage—what is this percentage?) (c) When will the

maximum difference in K between the two formulas occur?
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COMPLEMENTARY ERROR FUNCTION (ERFC)

erf(z) = %rexp‘ﬁzdﬂ
0

erf(—z) = —erfz
erfc(z) = 1 — erf(2)

z erf(z) erfe(z) b4 erf(z) erfc(z)
0 0 1.0 1.1 0.880205 0.119795
0.05 0.056372 0.943628 12 0.910314 0.089686
0.1 0.112463 0.887537 1.3 0.934008 0.065992
0.15 0.167996 0.832004 1.4 0.952285 0.047715
0.2 0.222703 0.777297 1.5 0.966105 0.033895
0.25 0.276326 0.723674 1.6 0.976348 0.023652
0.3 0.328627 0.671373 17 0.983790 0.016210
0.35 0.379382 0.620618 1.8 0.989091 0.010909
0.4 0.428392 0.571608 1.9 0.992790 0.007210
0.45 0.475482 0.524518 2.0 0.995322 0.004678
0.5 0.520500 0.479500 231 0.997021 0.002979
0.55 0.563323 0.436677 2.2 0.998137 0.001863
0.6 0.603856 0.396144 2.3 0.998857 0.001143
0.65 0.642029 0.357971 2.4 0.999311 0.000689
0.7 0.677801 0.322199 2.5 0.999593 0.000407
0.75 0.711156 0.288844 2.6 0.999764 0.000236
0.8 0.742101 0.257899 2.7 0.999866 0.000134
0.85 0.770668 0.229332 2.8 0.999925 0.000075
0.9 0.796908 0.203092 29 0.999959 0.0000041
0.95 0.820891 0.179109 3.0 0.999978 0.000022

1.0 0.842701 0.157299

SERIES EXPANSIONS
Exponential Integral
Letthe argument of the exponential integral be x,asin E; (x).If x isless than or equal to 1.0, then
E(x) = —Inx — 0.57721566 + 0.99999193*x — 0.24991055*x* + 0.5519968*x>
— 0.00976004*x* + 0.00107857*x°

586
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If x is greater than 1.0, then

[exp (—x)/x]*[0.250621 + x*(2.334733 + x)]
[1.681534 + x*(3.3306571 + x)]

Efx) =

Let the argument of the error function be x, as in erf(x). If x is greater than 3.0, then
erf(x) = 1.0

If x is less than 0.0 (negative), then let x = —x; or if x is positive but less than or equal
t0 0.9, then let x = x. Also let y = x? for x negative or positive. Then,

erf(x) = 1.12838*x*((((((—7.57576E — 4*y + 0.00462963)*y
— 0.0238095)*y + 0.01)*y) — 0.333333)*y + 1.0)
and, if x was negative, then
erf(x) = — erf(x)
If x is greater than 0.9 but less than or equal to 3.0, then y = x2 and

B 1.0
1.0 + 0.47047*x

Then,
erf(x) = 1.0 — T*((0.7478556*T — 0.0958798)*T + 0.3480242)*exp(—y)

CONVERSION FACTORS

The student may find these conversion units useful for problems encountered in the text, and
elsewhere in unsaturated zone hydrology. Most of the values in the following conversion ta-
bles have been rounded to the second decimal. For greater accuracy, consult a recent issue of
the CRC Handbook of Chemistry and Physics. To convert a value from the units in the
“From” column to those in the “To” column, multiply the “From” column by the numerical
value at the intersection.

Example: 78 gal min~" to m® hr™%: 78 gal min~1%0.227 = 17.707 m® hr™%; or, in reverse:
17.707 m® hr~'*4.404 = 78 gal min 1.

Flow Rate Conversion

From — To L sec™ m® min~! m® hr! gal min ™! gal hrt ft® sec™?
Lsec™? 1 0.06 3.60 15.85 9.51 X 10? 315361072
m> min~* 16.67 it 60 2.64 X 10? 1.59 x 10* 0.589
m® hr™! 0.28 1567 %2 107% i 4.404 2.64 X 10* 9.81 X 1073
gal min™~! 6.31 X 1072 3.79 X 1073 0.227 1 60 223 x 1073
gal hr! 1.05 X 1073 6.31 X 1073 3.79 x 1073 1.67 X 1072 1 371X 1072
ft* sec™? 28.32 1.70 1.02 X 10? 4.49 X 10? 2.69 x 10* ik
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590 Appendix 3 Tables

Physical Constants

Atomic mass unit u 1.661 X 107% kg
Avogadro constant N, 6.022 X 10* mol™!
Boltzmann constant 1.381 X 107BJK!
9.100 X 10 kg

1.602 X 107" C (electric charge
per mol of electrons)

k
Electron rest mass m
Elementary charge e

Electron charge —e/m,  —1.7588 X 101" Ckglor
4.803 X 107 abs esu
Faraday constant F 9.6485 X 10* Cmol !
23,060 cal molteV™!
Gas constant R 8314 J K ' mol™!
0.08314 L bar K™! mol™*
1.987 cal K~! mol !
0.08206 L atm K™ mol™*
Ice point (absolute zero) 273.15K
Molar volume (ideal gas,0 °C,1 atm)  V,, 22.414 X 10° cm® mol ™!
Natural logarithm of 10 In 10 2.302585
Permittivity of vacuum &, 8.854 X 1072 C*N'm™
& 8.854 X 1072 C* ™' m™2
1/4mwe, 0.8988 X 101" N m?C™?
Planck constant h 6:626 X 107 Js
Proton rest mass m, 1.673 X 107%" kg
RIn 10 19.14 I mol ' K1
BT 1n x 5706.6 log x J mol~! or 1364.1
log x cal mol™!
RTF'In10 59.16 mV at 298.15 K
RTF 'lny 0.05916 log x, volt at 298.15 K
Rydberg constant R. 1.097 X 10" m™!
Speed of light in vacuum ¢ 2.998 X 108 ms™!

Useful Conversion Factors

Energy, work, heat 1 joule = 1lvolt-coulomb = 1 newton meter
= 1 watt-second = 2.7778 X 1077 kilowatt hours
= 10" erg
= 9.9 X 107? liter atmospheres
= 0.239 calorie
= 1.0365 X 107° volt-faraday
= 6242 X 108 eV
= 5.035 X 10?2 cm™! (wave number)
= 9.484 X 10~*BTU (British thermal unit)
= 3 X 10~® kg coal equivalent
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Entropy 1 entropy unit, cal mol ™' K™! = 4.184 J mol ' K
Power 1 watt = 1 kg m?s™>

=239 X 10~*kcal s' = 0.860 kcal h™!
Pressure 1 atm = 760 torr = 760 mm Hg

= 1.013 X 10° N m™? = 1.013 X 10° Pa (Pascal)

= 1.013 bar

Statistics on water
Density @ 3.98 °C (peak density) = 999.973 kg m™> = 0.999973 g cm™> = 1.000000 g ml™
Density @ 0 °C = 999.87 kg m ™3
Ice Density @ 0 °C = 916.76 kg m >

Converting X number of ppm,, to density (g m~3) units
At STP, 1 mole of gas occupies 22.41(V,),at P, = 101.325 kPa, T, = 273.16 K, where a mole

of the particular gas has a mass (m,) in grams/mole.
From the ideal gas law:
PV,=mRT, and p=pRT
Using both equations, solving for p, in terms of volume, and inserting constants:

m[gm mol_l]) (1000[L]) (273.15 K) < P[kPa] )

[ X parts volume
[m’] T[K] 101.325 kPa

-31 _
plgm™] (106 parts volume) (22.4 [L mol™]

where “L” refers to liters.

Converting water in chemical potential units [J kg~"] to pressure potential units [Pa]

Often it is more convenient to work with water potential in pressure units, particularly if
water potential is sensed with pressure transducers. Here, a chemical potential of A in [J kg™!
or energy per unit mass] is converted to pressure potential [Pa] units by dividing the energy
per mass units by the partial molal volume of water (18 X 107% m® mol™?), valid for dilute
solutions.

A[Tkg™]

X 0. 1 Py =A
18 X 10~5[m’ mol -] 018016 [kg mol '] [kPa]

Converting X number of pCi (pico Curies) of a radioactive gas to its concentration in
parts per million (ppm,) units
Radioactive materials decay at a rate given by the following simple, ordinary differential
equation:
as _
dt
where S is concentration, ¢ is time, and k is the disintegration constant. Radioactive half-life
is defined as the amount of time for half of the mass of radioactive material to decay. Solving
the above equation, we can solve for the disintegration constant using half-life:

S 1
S_ = 5 = exp(—kt)

]

—kS
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where S, is the initial concentration of element S. The disintegration rate per unit time
[d s™1]is measured in Curies (C): C = 3.7 X 10'°d s™" or in pico Curies: pC = 0.037 ds™ 1. The
conversion from pC L™! to ppm follows from rearrangement of the above equations:

as X[pC]
dr | [L] |/0.037[ds”"]
s wT e )

which yields the result of disintegrations per liter. Since there is one disintegration per atom,
the final conversion to ppm, is:

<S [atoms] )( 1 [mole] )(22.4 [L] ) (106 parts [L]

[L] 6.023 X 10% [atoms]/\ [mole] 1 part [L] ) = yppm,

This conversion is at STP (standard temperature and pressure).

A conversion example: Radon has a half-life of 3.82 days = 3.3 X 10°s. Witht = 3.3 X
10° s,k = 2.10 X 107% s™L. If radon concentration is 100 pC 17!, one may calculate a 1.74 X
10° disintegrations per liter and a concentration of 6.5 X 107! ppm,.

THE INTERNATIONAL SYSTEM OF UNITS (SI)

This unit system is based on the metric system. It was designed to achieve maximum internal
consistency and based upon the following defined units:

Physical quantity Unit Symbol
Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Luminous intensity candela cd
Amount of material mole mol

The main derived units are:

Force newton N (kg m™?)
Energy, work, heat joule J (N m)
Pressure pascal Pa (Nm™?)
Power watt W (Js™h
Electric charge coulomb C (As)
Electric potential volt V(WA
Electric capacitance farad F(AsV™
Electric resistance ohm Q(VA™
Frequency hertz Hz (s7%)

Conductance siemens S(AV™
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To convert
SI units into
Non-SI units

To convert
Non-ST units
into ST units,

multiply by SI unit Non-SI units multiply by
Energy, work, quantity of heat
9.52 x 107* joule, J British thermal unit, BTU 1.05 x 10
0.239 joule, J calorie, cal 4.19
107 joule,J erg 1077
0.735 joune, J foot-pound 1.36
2387 X 1077 joule per square meter, J m~2 calorie per square centimeter 4.19 x 10*
(langley)
10° newton, N dyne 1073
143 x 1073 watt per square meter, W m ™2 calorie per square centimeter 698
minute irradiance, cal cm™? min ™!
Transpiration and photosynthesis
3.60 X 1072 milligram per square meter gram per square decimeter hour, 27.8
second, mg m 257! gdm™h~!
5.56 x 1073 milligram(H,O) per square micromole (H,O) per square 180
meter second, mg m 2 s centimeter second, umol cm™2 57!
1074 milligram per square meter milligram per square centimeter 10*
second, mg m %5~ second, mg m 257!
35.97 milligram per square meter milligram per square decimeter 2.78 X 1072
second, mg m™2 57! hour, mg dm™2h~!
Water measurement and flow rate
9.73 X 1073 cubic meter, m? acre-inches, acre-in. 102.8
9.81 X 1073 cubic meter per hour, m®> h™? cubic feet per second, ft3s™! 101.9
4.40 cubic meter per hour, m* h™! U.S. gallons per minute, gal min ™" 0.227
2.642 X 10% cubic meter per hour, m® h™! U.S. gallons per hour, gal hr™* 3.785 x 1073
8.11 hectare-meters, ha-m acre-feet, acre-ft 0.123
97.28 hectare-meters, ha-m acre-inches, acre-in. 1.03 X 1072
8.1 X 1072 hectare-centimeters, ha-cm acre-feet, acre-ft 12.33
Concentrations
1 centimole per kilogram, cmol kg™'  milliequivalents per 100 grams, 1
(ion exchange capacity) meq 100 g
0.1 gram per kilogram, g kg™ percent, % 10
1 milligram per kilogram, mg kg™! parts per million, ppm 1
Electrical conductivity, electricity, magnetism
10 siemen per meter, S m™! millimho per centimeter, mmho cm™ 0.1
104 tesla, T gauss, G 104
Radioactivity
27 x 1074 becquerel, Bq curie, Ci 3.7 x 101
2.7 X 1072 becquerel per kilogram, Bq kg™! picocurie per gram, pCi g™} 37
100 gray, Gy (absorbed dose) rad, rd 0.01
100 sievert, Sv (equivalent dose) rem (roentgen equivalent man) 0.01
Plane Angle
57.3 radian, rad degrees (angle), ° 1.75 X 1072
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To convert
SI units into
Non-SI units

To convert
Non-SI units
into SI units,

multiply by SI unit Non-SI units multiply by
Length
0.621 kilometer, km (10° m) mile, mi 1.609
1.094 meter, m yard, yd 0.914
3.28 meter, m foot, ft 0.304
1.0 micrometer, um (1076 m) micron, p 1.0
3.94 X 1072 millimeter, mm (107> m) inch, in. 25.4
10 nanometer, nm (10™° m) angstrom, A 0.1
Area
2.47 hectare, ha acre 0.405
247 square kilometer, km? (10> m)? acre 4,05 X 1072
0.386 square kilometer, km? (10° m)? square mile, mi? 2.590
2.47 X 107 square meter, m? acre 4.05 X 10°
10.76 square meter, m? square foot, ft* 9.29 X 1072
1.55 X 1073 square millimeter,mm? (10> m)?>  square inch, in.? 645
Volume
9.73 x 1073 cubic meter, m® acre-inch, acre in 102.8
35.3 cubic meter, m® cubic foot, ft3 2.83 X 1072
6.10 x 10* cubic meter, m? cubic inch, in.? 1.64 X 1073
2.84 X 1072 liter, L (1073 m?) bushel, bu 35.24
1.057 liter, L (1073 m®) quart (liquid), qt 0.946
3.53 x 1072 liter, L (10~ m?) cubic foot, ft* 283
0.265 liter, L (107> m®) gallon, gal 3.78
33.78 liter, L (107 m®) ounce (fluid), oz 2.96 X 1072
2.11 liter, L (1073 m?) pint (fluid), pt 0.473
Mass
220 X 1072 gram, g (1072 kg) pound, Ib 454
3.52 X 1072 gram, g (107 kg) ounce (avdp), oz 28.4
2.205 kilogram, kg pound, Ib 0.454
0.01 kilogram, kg quintal (metric), q 100
1.10 x 1073 kilogram, kg ton (2000 1b), ton 907
1.102 megagram, Mg (tonne) ton (U.S.), ton 0.907
1.102 tonne, t ton (U.S.), ton 0.907
Yield and Rate
0.893 kilogram per hectare, kg ha™* pound per acre, Ib acre™! 1.12
7.77 X 1072 kilogram per cubic meter,kgm™  pound per bushel, b bu™ 12.87
1.49 x 1072 kilogram per hectare, kg ha™* bushel per acre, 60 1b 67.19
1.59 X 1072 kilogram per hectare, kg ha™! bushel per acre, 56 1b 62.71
1.86 X 1072 kilogram per hectare, kg ha™* bushel per acre, 48 1b 53.75
0.107 liter per hectare, L ha™! gallon per acre, gal acre™! 9.35
893 tonnes per hectare, t ha™ pound per acre, Ib acre™! 112 %1072
893 megagram per hectare, Mg ha™! pound per acre, Ib acre™! 1.12 % 107°
0.446 megagram per hectare, Mg ha™! ton (2000 Ib) per acre, ton acre ™! 224
2.24 meter per second, m s™! mile per hour, mph 0.447
Specific Surface Area
10 square meter per kilogram, m? kg ™'  square centimeter per ram, cm’ g~ 0.1
1000 square meter per kilogram, m?kg™' square millimeter per gram, mm?g~"  0.001
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To convert
ST units into
Non-SI units

To convert
Non-SI units
into SI units,

multiply by SI unit Non-SI units multiply by
Pressure
9.90 megapascal, MPa (10° Pa) atmosphere 0.101
10 megapascal, MPa (10° Pa) bar 0.1
1.00 megagram, Mg m > gram per cubic centimeter, g cm ™3 1.00
2.09 X 1072 pascal, Pa pound per square foot, Ib ft 2 47.9
1.45 X 1074 pascal, Pa pound per square inch, 1b in.? 6.90 X 10°
Temperature
1.00 (K-273) kelvin, K Celsius, °C 1.00
(°C + 273)
(9/5:°C) + 32 Celsius, °C Fahrenheit, °F 5/9(°F—-32)

SI Units for Use in Unsaturated Zone Hydrology

Quantity Application Symbol
Concentration Gas concentration gm™
mol m™3
Water content kg kg™!
m*m™3
Density Particle density Mg m™3
Bulk density
Flux density Heat flow Wm™
Gas diffusion gmy 55
mol m™25s7!
Water flow kgm™?s!
m*m™2s7!
Gas diffusivity Gas diffusion m?s7?
Hydraulic conductivity Water flow kgsm™
mist
ms~!
Potential energy of soil water Driving force for flow T kgt
kPa
m
Specific heat Heat storage Jkg'K™!

Units for Water Flow Applied to Darcy’s Law

Flux density

Hydraulic conductivity

Potential gradient

Potential in energy per unit
mass (kg m2s7Y)

Potential in energy per unit
volume (ms™})

Potential in energy per unit
weight (m s™?)

kgsm™

m’skg™?

ms!

Jkg'm~

1

Source: Data from Campbell and Schilfgaarde (1981)
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LIST OF SYMBOLS

Symbol Description Units

a Constant or specific volume or albedo L? or decimal
a Activity

a Sphere radius m

A Available energy W m™

A Measured Carbon-14 radioactivity —

A Area m?

A Specific surface area m? kg™!

A Hamaker constant (see equation 3.48) ergs

a Activity of species i mol L™t
A, Wave amplitude —

A, Radioactivity level at some initial time Bq

A, Interstitial surface area of pores m?kg™!

b Constant —

b Complex number —

b Width of sample m

B Retardation of the soil being used Jm™

c Specific heat of soil TkgtK™!
c Solute concentration mol L™}
€ Carbon 12 ==

B¢ Carbon 13 -

e Carbon 14 =

¢ Integration constant —

C Curies or concentration (3.7 X 10" Bg) ormg L™*
@ Ton concentration at specified distance from charged surface ions cm ™3
C. Equilibrium aqueous concentration mg L™!
Cows Contaminant concentration in ground water pug Lt

C; Concentration of pollutant gl

@, Specific heat of soil constituent i TkgtKk™?
@ Concentration of species i mol L™!
@ Ton concentration in bulk solution ions cm ™3
G Specific heat of air )
& Heat capacity T mol ™
@; Molar salt concentration ML
Gy Specific heat of soil Tkprtkt
d Depth of soil layer m

d Distance, diameter, thickness, or midpoint m

D Fractal dimension —

D Mass of water lost through drainage out of soil column kg

D Hydraulic diffusivity | it

D, Hydrodynamic dispersion coefficient L2

D Width of crack; 2d of spherical particle m

D Dielectric constant unitless
D, Diffusivity of air ms™!

Dy Binary gas diffusion coefficient ms™!

D* Knudsen diffusion coefficient ms™!

D, Thermal diffusivity of soil ms™!

D Diffusion coefficient of gas species s misi

D, Thermal diffusivity for thermally driven moisture flux ms™!

Dy Molecular diffusivity of water vapor misny

D, Diffusion coefficient in free air ms™!

D@ Electric displacement at phase a Gm™2

D, Diffusivity for moisture flux due to a moisture gradient ms™

d; Thickness of layer m

d, Total depth of considered soil cm

(continued)




List of Symbols

Symbol Description Units
d. Equivalent depth of soil water if extracted and cm
ponded over soil surface
e Unit of electronic charge (cgs or esu system) 4.803%¥107 esu
e Unit of electronic charge (SI system) 1.6021*¥107Y C
e Void ratio unitless
e Vapor pressure Pa
erf Error function —
erfc Complimentary error function —
. Saturation vapor pressure Pa
e Saturated vapor pressure at wet bulb temp. Pa
E Evaporation rate ms!
E Water vapor flux (mass flux or evaporation rate) gm 257!
E Potential energy per unit volume T miz
E Young’s modulus Nm™
E Electric field strength Nor Kgms™
E, Charge-balance error (deviation from electroneutrality) unitless
B Cumulative rate evaporation ms™!
E, Redox potential v
E; Potential energy of interaction erg cm™?
E .. Maximum rate of evaporation ms™!
E, Free-water evaporation rate ms™!
ET Evapotranspiration (can also use flux units g m™2s) ms™!
ET, Potential evapotranspiration ms™!
ET,, Equilibrium evapotranspiration ms!
e’ Saturated water vapor pressure Pa
E? Standard redox potential v
E; Induced streaming potential by a thermal gradient Vm!
E, Electric resistivity Sm™
exp Exponential function —
i Fractional amount decimal
jid Frictional coefficient unitless
£ Area of the air-water interface associated with the m?
triangular volume
if Force or frictional resistance dynes or N or Kg ms™2
f; Volume fraction of a soil constituent —
F Specific flux gm?s7!
F Faraday constant 96490 C mol ™
F Partial molal free energy Jgt
F Free energy J mol™ or ergs mol ™!
F Linear free energy J mol™?
F, Breaking force applied at the center of the soil NorKgms™
sample beam span
F. Critical flocculation concentration value mol L™!
E, Resistence or drag force on an individual particle g cm? sec ™2 (dynes)
F4 Drag force NorKgms™
F, Force of gravity on a soil particle g cm? sec™?
F. Molar flux of constituent i molm™2s™!
F; Static equilibrium —
F° Static force NorKgms™
F Partial molal free energy under influence of forces Jgt
g Gravitational acceleration ms™?
g Gravitational constant N m? kg2
G Soil heat flux Wm™?
G Strain energy release rate dynes cm 2 or J m™2
G Change in stored heat Wm™?
GE Excess Gibbs free energy Jmol™
G Gibbs free energy of mixing Jmol™

(continued)
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Symbol Description Units

GM Energy of mixing J mol™!

G° Gibbs free energy Jmol™?

G, Soil heat flux measured by a flux plate W m™

Gigal Combined measured soil heat flux Wm™?

G Change in stored soil heat W m™?

h Height m

h Planck’s constant ergs

h Distance below the water table m

h Distance m

h Suction Jm™

2H Deuterium —

*H Tritium —

H Hurst exponent unitless

H Sensible heat flux Wm™

H Hydraulic head m

H Minimum distance between two particle surfaces or spheres m

h, Height of fluid column m

hy Pressure drop m

H,, Heat of immersion Jm™

h,, Matric head of soil water m

h, Osmotic pressure head of soil water m

h, Pressure head m

h, Velocity head m

i Infiltration rate ms™!

i Index o

i Area for the solid-water interface m?

i/n, Concentration of ionic species in outer solution mol m™?

1 Cumulative infiltration m

I Intensity of light W m™?

1 Strength of applied electric field NC!

I Ionic strength eqL™

I Electric current FCt

Ie' Force acting on charge e’ NorKgms™2

I; Final infiltration rate ms™!

I, Initial infiltration rate (T = 0) ms!

I, 7' jonization potential —

j Index o

J Mass flux Kgm™2s™!

k Thermal gradient ratio e

k Boltzmann constant 1.3805%107%

JK 'mol™!

k Intrinsic permeability m?

k Stokes’s constant e

k, Air permeability in soil m?s™!

AK Change in kinetic energy J

K Equilibrium composition =

K(0) Unsaturated hydraulic conductivity ms™?

K Proportionality constant 8.988*10° N m? C™2

K Constant 8¥107 ¥ 2 L1
or 8*107%
ergs? Lt

K Hydraulic Conductivity m2s !

K, Saturated hydraulic conductivity m?s7!

K, Thermodynamic equilibrium constant (initial condition) unitless

K, Thermodynamic equilibrium constant (final condition) unitless

K, Acid dissociation constant unitless

Koo Apparent acid dissociation constant unitless

K, Base dissociation constant unitless

K Thermodynamic equilibrium constant unitless

(continued)
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Symbol Description Units
K, Exchange equilibrium constant unitless
K¢ Gapon constant unitless
K, Eddy diffusivity of heat m?s™!
Ky Henry’s law constant —

? Standard partial molar compressibility —
K, Dissociation constant mg kg™
K, Effective hydraulic conductivity ms™!
K; Hydraulic conductivity of each layer ms!
K, Linear adsorption coefficient mL kg™!
K,, Octanol-water partition coefficient unitless
K, Thermodynamic equilibrium constant (partial pressure) unitless
K, Salting parameter unitless
K, Eddy diffusivity of vapor m?s~!
Koy Autodissociation constant of water unitless
K’ Pore shape factor —
/ Tube length m
I Thickness of clay particle m
! Actual length of pore m
1, Effective length of pore m
L Point of measurement within the hydrometer —
L Length m
L, Distance from soil surface to wetting front m
L, Latent heat of melting Jkg 'K!
IS Latent heat of sublimination JkgtK™!
L, Latent heat of vaporization Jkg'K™!
L, Effective length m
m Molecular weight gmol™!
m Mass of electron kg
m Mass kg
M Mass of sample kg
M Molecular weight of water (mole basis) 18 g mol ™!
M Molar concentration mol L™!
M Molar mass of water g
m, Mass of pycnometer filled with air kg
m,, Molality of the anion mol g~!
My, Molality of the cation mol g™?
my Molecular weight of dry air gmol™!
m; Mass or number of moles of the various constituents in system g or mol
m, Molecular weight of water g
AM Change in mass kg
M; Mole fraction of water in inner solution mol mol ™!
M, Mole fraction of the ith constituent mol mol™?
M Mass of gas i kg
M, Number of capillaries of radius R, unitless
M, Mole fraction in the outer solution mol mol™!
my Mass of oven dry porous media sample kg
M, Mass of solid kg
Mgy, Mass of pycnometer filled with soil and water kg
m, Mass of pycnometer filled with water kg
n Statistical number of clay layers unitless
n Electrolyte concentration in solution mol L™! or

ions cm™3

n Integer value —
5N Nitrogen 15 —
N Number of electrons in outermost shell unitless
N Number of Carbon 14 atoms unitless
n* Cation concentration mol L™!
n” Anion concentration mol L!
N, Avogadro’s number 6.023*10%

(continued)
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Symbol Description Units
n; Molarity of solute i mol L!
n; Concentration solutes in inner solution mol cm ™
n, Concentration of ionic species in outer solution ions cm™?
N,y Number of pore volumes e
80 Oxygen 18 _—
D Vector unitless
P Pressure Pa or Nm™
P Potential energy Tkg!
32p! Phosphorus 32 —
P Energy consumed in photosynthesis W m™
P Net pressure Pa
P Photosynthesis W m™
P . Pressure Tm™
P Precipitation rate ms™!
P Percent media remaining in suspension at reference point unitless
P Gas pressure Paor Nm™
op Peclet number unitless
Do Pressure of chamber 2 after isothermic expansion PaorNm™
P, Gas pressure required for monolayer saturation at Paor Nm™
experimental temperature
)2 Initial pressure Paor Nm™
D2 Final pressure (chamber 1) Paor Nm™
Pa Atmospheric pressure Paor Nm™
P, Air pressure Paor Nm™
Py Outer pressure PaorNm™
P, Envelope pressure Paor Nm™
P, External pressure Paor Nm™
P, Pressure due to standing head in soil column Paor Nm™
P; Internal force between particles NorKgms™
Dm Pressure equal to the matric potential of soil Paor Nm™
Do Potential energy at reference state Tkg™
Do Vapor pressure at a free surface of pure water under Paor Nm™
atmospheric conditions
P° Standard-state pressure Paor Nm™
P, Precipitation rate ms™!
P, Swelling pressure PaorNm™
D, Tensiometer pressure PaorNm™
e Pore-water pressure Paor Nm™
q Specific humidity =
q Flux density (specific discharge) ms™!
q Number of atoms per unit of substance making unitless
up the particles
q Darcy flux ms?
q/q’ Electrical charges C (coulombs)
q, Hydraulic flow rate mrsT
0 Rate of volume flow m?'s™!
(0] Actual composition =
0, Electric charge @
0. Dry-weight concentration mgkg™!
0, Heat of adsorption cal mol™!
0o, Heat given off due to intermolecular potential cal g™
(o Heat of adsorption of first layer of adsorbing gas cal mol ™
O Heat of gas liquification cal mol™!
0, Flux density of gas ms!
Q, Total outflow m’ s~
QO Respiration rate factor =
r Reflectivity unitless
r Tube radius; particle radius m

(continued)
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Symbol Description Units

r Distance between two atoms m

R Retardation coefficient dimensionless
R Hydraulic resistance Pasm™

R Universal gas constant 8314 JK ' mol™!
R Runoff rate m’s!

R, R, Radii of curvature of meniscus m

R, - Corrected hydrometer reading —

Re Reynolds’s number dimensionless
R, Hydraulic resistence of soil crust ms™

R, Net radiation Wm™

R, Radius of rotation m

R, Depth to point of measurement m

R, Hydraulic resistence of soil subcrust ms™!

R, Ideal gas constant of vapor JKg K™
Ty Respiration base rate mgm™3s!
T Stomatal resistance or areal resistance sm™

r, Effective pore radius m

r Charge separation distance m

s Slope of the saturation vapor curve =

s Gas constituent e

s Degree of saturation —

s Specific surface area of soil m?kg™!

s Triangular volume of the tube m3

S Sulfur 34 e

S Solute adsorbed ngg™

S Slope —

S Source or sink term of energy or gas —

S R/a;reducesto 2 + H/a dimensionless
S Sorption m’g™!

S Siemens AV

S Entropy Jmol ' K™!
Sy Specific surface area per unit bulk volume of soil m*kg™!

S, Effective saturation decimal

S Concentration of sorbed chemical (i species) mol kg™!
Sia Saturation index —

Sk Geometrical shape factor of pore space —

St Specific surface area per unit mass m?kg™!
SMOW Standard mean ocean water —

S Reference distance m

S2 Molar solubility mgL™?

S, Specific storage m?

S Soil sorbed contaminant concentration ugkg™!

S, Stored energy J

S5 Specific surface area per unit volume m?kg™?

t Time s

I Temperature K

T; Final temperature K

T Half life (In 2/A) —

Tpp Dew point temperature MO

T, Melting point K

z, Initial or surface temperature °C

L, Time of ponding s

i Wet-bulb temperature °C

TU Tritium units —

u Velocity parallel to mean flow ms™!

AU Change in potential energy J

U Velocity ms™?

U External electric field N

(continued)

601



602 Appendix 3

Tables

Symbol Description Units

v Velocity normal to mean flow ms™!

v Velocity of soil particle ms™!

v Linear velocity ms™!

v Velocity ms™!

1% Volume of water in the meniscus m’

1% Volume m’

1% Molar volume of water 18 cm® mol™!

vy, 0, Constant velocity ms™!

Vi Volume of compression chamber 1 m’

V, Volume of compression chamber 2 m’

v, Volume of air m?

Vi Average attraction force per unit of material ergs cm ™2

v, Effective velocity ms™!

Ve Volume rate of flow m’s7!

Ve Viscous force N

v; Fluid volume m’

Vi Partial molar volumes of i under actual conditions m’

144 Partial molar volumes of i under standard conditions m’

v, Liquid volume m?

Vo Volume of adsorbed gas forming monomolecular layer m’
on adsorbant

v, London frequency Sy

V., Potential energy due to repulsive forces Jimi

Vi Repulsive force for energy between two spherical particles ergs cm™!
of equal dimension

Ve Repulsive energy between particles at constant potential Tm™

V, Solid volume m’

Vv, Total volume m’

Ve Total potential energy Jm™

Vy Partial volume of water m’

Ve Partial molal volume of soil water m’

Ve Volume of water in soil pores m’

w Velocity in the vertical direction misi.

w Mass wetness g

w Work J

w Work done by the system i

w Weight of oven-dried soil g

w Hydration energy Jem™ 2

we Reduced repulsive energy at constant charge density Jm?

wY Reduced repulsive energy of two parallel flat plates of Im?
constant potential

W, Mass of water sorbed to provide one molecular thickness g
of coverage

w; Specific volume of water m’

X Distance m

X Concentration of each ion in solution ions cm™?

X Negatively charged surface (assuming an adequate number unitless
of exchange sites are present)

x, Equals d; distance in equation 3.70 m

*; Mole fraction of i* ions ions mol ™

y Distance from reference m

¥ Concentration of each electrolyte between plates mol L™?

z Distance m

z Depth relative to soil surface m

z Valence of ion unitless

z Gravitational potential Tm™

Z, Damping depth m

z Depth of soil column or water-table depth m

(continued)
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Symbol Description Units

Z Concentration of dissociated and absorbed cations ions cm™3

Z(p) Compressibility factor unitless

Zoil Depth to soil reference point m

Zot Depth to water table m

Z, Increment in distance from standard height of point X m

v Laplacian differential operator unitless

A Angstrom 107%m

aq Increment of heat evolved Wm™

y Increment of water added m’

a A constant unitless

a Dispersivity cm

a Aquifer compressibility unitless

@ Polarizability m?

B Bowen ratio, soil specific constant, fluid compressibility dimensionless

y Psychrometric constant dimensionless

v Temperature change with depth Cm !

y Surface tension ergs cm ™2 or
dynes cm™! or
JmZ2orNm™

Yr Thermodynamic psychrometric constant unitless

Y, Molar activity coefficient of species i unitless

Yy Surface tension of the fluid Jm™2 or ergs cm 2

Vo Surface tension or energy of the material Jm™

Vi, Interfacial tension IJm2orNm™

) Plate thickness at distance 2d, depth m

é Net increase of moles of gas in formation reaction unitless

Ay Potential difference I

AG° Gibbs free energy of formation kcal mol™?

AG* Change in surface free energy kcal mol™*

AH Quantity of heat J

AH; Heat of fusion kJ mol™!

AH® Change of enthalpy kJ mol ™!

€ Ratio of molecular weights of water vapor and dry air unitless

€ Emissivity unitless

€ Dielectric constant (80 for water) unitless

& Permittivity of the solution esu?erg lcm™!

&, Permittivity constant of vacuum 8.854*10™2 Fm

&, Velocity for a potiental gradient of 1 volt ms™!

74 Zeta potential v

& Temperature change with depth K

iz Density kg m™3

n Dynamic viscosity Pas™!

n, Electrolyte concentration ion cm™3

0 Angle radians

0 Volumetric water content m®m™3

6, Volume fraction of air m’m™>

6, Initial volumetric water content m®m™3

0,, Maximum volumetric water content m’m™3

0, Initial soil-water content m’m™3

6, Residual saturation m® m™3

0, Saturated water content m®m™3

0, Volumetric water content of transition zone during m’m™3

infiltration

6, Volumetric water content at distance x m’m™3

cos 6 Contact angle degrees

K Debye m™!

k1 Effective thickness m

K Thermal conductivity WmK™!

(continued)
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Symbol  Description Units

K; Thermal conductivity of a soil constituent WmK!

K(f) Soil-water suction function Tm?

A Wavelength nm

A Pore size distribution index —

A Decay constant for Carbon 14 1.2*¥107* yr!

A Wavelength of London frequency nm

A Specific or electrical conductivity of water Sm™! or ohms cm™!

I Rate constant s

" Potential energy of medium under consideration Tkg™!

oy Chemical potential at a distance 1/2 particle diameter from Tkg™!
solid surface

o Chemical potential of the i component Tkg™

W Chemical potential between two plates Tkg™!

i, Chemical potential Tkg™

iy Chemical potential of water (vapor phase) Tkg!

Mo Chemical potential for the soil-water component Tkg!

(1) Chemical potential of soil water Tkg™

wo Chemical potential for pure free water at the same Jkg!
temperature and atmospheric pressure

Hy Chemical potential at point y Tkg™

v Kinematic viscosity m?s~!

v, Viscosity of air m?s~!

v, Volume drained (fluid) m’

I Osmotic pressure of solution Tkg™

I1 Period of time T

o Osmotic potential of solution Tkg™!

T 3.14159... unitless

; Osmotic coefficient of solute i Tkg™!

p Reaction constant =

p Density of solution kgm™

Pa Dry air density kg m™>

Pa Density of phase kg m™>

pr Fluid density kg m™>

Pg Gas phase density kgm™

o5 Density of solid (particle) phase kgm™>

Puapor Density of vapor kgm™

0y Water vapor density kgm™

P Density of water kgm™3

Py Bulk density kg m™3

o Stefan—-Boltzmann constant 107 %Wm 2K~

o Charge on colloid surface esucm™2 or

meq cm 2

o Adsorption per unit area mol m™2

o Substituent constant =

o Surface energy per unit area of fluid-gas interface Jm™

a* Charge due to a surplus of cations Cm™

o~ Charge due to a deficiency of cations \'

g, Intergranular pressure Pa

a, Modulus of rupture dynes cm ™2

o, Soil stress N

o, Limiting stress N

or Total charge v

T Tortuosity mm™!

T Transmissivity m?s~!

T Tensile stress normal to the plane of the crack N

Tip Half-life s

7 Internal frictional force N
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Symbol Description Units
£ Geometric term m?
) Polar coordinate unitless
) Phase shift unitless
o) Porosity unitless
b, Volume fraction of considered phase unitless
b, Volume fraction of air in soil pores unitless
P, Effective porosity unitless
& Volume fraction of gas in soil pores unitless
& Gain or loss via various source/sink(s) kgm3s7!
¢, Volume of water in media pores unitless
b, Residual water content unitless
@, Volume of solids in soil pores unitless
¢, Total volume of soil unitless
¢, Volume of all void spaces unitless
W Effective suction at wetting front Jm™
W, Brooks—Corey bubbling pressure Jm™3
o, Saturated suction (matric suction = 0) Jims?
17 Water potential JmiE
] Electrical potential of the colloid at specified distance v
] Surface charge \'%
v, Pneumatic (air or vapor) potential Jms
/R Overburden pressure potential Jm™?
U, The matric potential for which K = 1/2K Im?
Uy Electric potential between layers v
¥, Gravitational potential Jmi?
U, Hydrostatic pressure potential Tm=
W, Partial potential Timi)
1/ Matric potential Jm™
o Matric potential of the loaded sample Jm™
U Matric potential of the unloaded sample Jm™
o, Osmotic potential ime"
¥, Electric potential at surface ergs esu”!
¥, Pressure potential Jrm =3
b, Potential at pore neck (r in meters) iJome
a Potential in middle of pore (R in meters) Jm™
o, Total potential Tm=>
Uy, Value of the matric potential when soil stress and external Timi>
air pressure are zero
w Angular frequency radians s™!
w Angular velocity degrees s

Note: Units in the symbols list are given as equivalent or derived SI units. However, these units may not be ex-
actly the same as the units for the specified symbol within the text. It should also be noted that we have used
J m™ for most of our potentials. This is easier to use unless one is concerned with the specific water density being
investigated within the unsaturated zone. See pp. 587-595 for further assistance concerning units.



