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Principles of Water Flow
in Soil

INTRODUCTION

By definition, a fluid is a substance that is capable of flow. In soils, this includes both the liquid
and gas phases. In the gas phase molecules are spaced farther apart, while in the liquid phase,
molecules are more closely bound. The intermolecular cohesive forces are considerably
smaller in a gas because of the separated distance of molecules, compared to those of a
liquid. Normally, fluids always possess elastic properties while under compression due to
their inability to resist shear stress. Consequently, fluids can alter their shape and flow char-
acteristics, depending on the physical and chemical characteristics of the medium.
Physically, fluid characteristics may be expressed as density, specific gravity, specific vol-
ume, and specific weight. Density is the mass of the fluid per unit volume, specific gravity is the

TABLE 6.1 Physical Properties of Water (Liquid Phase)

Heat Surface Thermal
Temperature Density, p capacity, C, tension, y conductivity Viscosity, 1

e (gcm™) @eglkHYt  Q0B3NmY) 102 WKm )t (Pas)t
0 0.99984 4.2161 75.6 561.0 0.001793
4 1.00000 4.2077 75.0 569.4 0.001567
S 0.99999 4.2035 74.8 573.6 0.001519
10 0.99970 4.1910 74.2 586.2 0.001307
15 0.99913 4.1868 73.4 594.5 0.001139
20 0.99821 4.1826 72.7 602.9 0.001002
25 0.99708 4.1784 71.9 611.3 0.000890
30 0.99565 4.1784 711 619.6 0.000798
35 0.99406 4.1784 70.3 628.0 0.000719
40 0.99222 4.1784 69.5 6322 0.000653
45 0.99024 4.1784 68.7 640.6 0.000596
50 0.98803 4.1826 67.9 644.8 0.000547
60 0.98320 4.1843 66.2 654.3 0.000466
70 0.97778 4.1895 64.5 663.1 0.000404
80 0.97182 4.1963 62.7 670.0 0.000354

Source: Data compiled from Lide (1992)

"To convert to (cal g™* deg™?), divide by 4.1868

*To convert to (cal cm ™' sec™ deg™) X 1073, divide by 418.68

§ Dynamic viscosity: to convert to (g cm™! sec™ ) X 1072, divide by 1000. To obtain kinematic viscosity,
divide dynamic viscosity by fluid density.
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ratio of fluid density to the density of pure water (which is dimensionless), specific volume is
the volume per unit mass, and specific weight is the weight per unit volume of the fluid. Some
of the physical properties of water are given in table 6.1. As shown in this table, the density,
surface tension, and viscosity decrease with an increase in temperature.

The following is assumed of a perfect fluid: it lacks viscosity, it is resistance free, it is in-
compressible (i.e., it has constant density), and it has no irrotational flow. Fluid flow is irrota-
tional when there is no angular momentum of the fluid about any object or point, that is, a
small wheel with a fixed rotational point in the center of its mass will not rotate about that
point if the wheel is placed (or submerged) in the fluid’s path. The assumption of these char-
acteristics implies that there will be no friction between various layers in the fluid as well as
no friction between the fluid and the boundary wall. As a result, the fluid is like an aggrega-
tion of small particles that support pressure normal to the particle surface, but glide over
other particles without resistance.

BERNOULLI'S EQUATION

The process of fluid transport always obeys the law of conservation of matter and energy.
Simply defined, inflow = outflow = change in storage. This principle applies equally to flow
into a lake, the cross-section of an aquifer, or a specific volume of soil. Mathematical formu-
lations of transport processes through soil must reflect the law of conservation, but because
soil-water flow problems are generally considered to be isothermal, the law of conservation
of energy can be omitted; however, the law of conservation of matter cannot. This law is
expressed in the continuity equation, which for one-dimensional flow is 96/t = —dgq/dx,
where 6 is the volume fraction of water.

In figure 6.1, we examine fluid flow through a pipe, labeled A at one end and B at the
other. For a specific time interval A¢, the fluid at point A (cross-sectional area of pipe) moves
a distance Ax; = v, At. Considering cross-sectional area A, the mass within this area is
Am; = piAAx; = p;Av, At, where p and v refer to pressure and velocity; likewise, the mass of
fluid moving through the upper end of the pipe may be expressed as Am, = p,BAx, =
p2Av, At. Since the flow is steady and mass is conserved, the mass which crosses A during
time A¢ must also equal the mass which crosses B during this same interval, resulting in
Amy = Am, and p; Av; = p,Bv,; this expression is termed the equation of continuity. The
equation of continuity simply implies that the product of the area and the velocity of the fluid
at all points through the pipe is constant—therefore, the pipe does not have to be the same
diameter at each end.

Figure 6.1 Incompressible fluid
flowing through a constricted pipe
(steady flow). The fluid in the cross-
FEE=EE sectional length, Ax,;, moves to
7, ; : -

B section Ax,. The volume is equal in
| = P,A, the two sections. Y is height above
reference, v is velocity, x is length,
and P is pressure. A and B are cross-
sectional areas at each end of the

pipe.

Ax,
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Assuming that fluid moves at a steady rate through a pipe of varying cross-sectional
area and that the pipe varies in elevation, the fluid pressure along this pipe will change.
In 1738, the Swiss physicist Daniel Bernoulli (1700-1782) derived an expression relating
pressure to fluid velocity, elevation, and conservation of energy, when applied to a perfect
fluid. The state of a fluid at any point may be characterized by the following four quantities:
(1) pressure, P; (2) velocity, v; (3) elevation, 4; and (4) density, p.

Consider a pipe with varying elevation and cross sectioned area, as in figure 6.1; flow
velocity is nonuniform at any point of interest, Ax. The force, F, at the lowest end of the pipe
in the figure is P; A, where P is pressure and A is cross-sectional area. The work done by the
represented forceis W, = F;Ax; = P; A;A; = P,AV,where AV represents the volume of the
lower cross-hatched region. The work done at the upper end of the pipe would follow the
same sequence (replacing all subscripts 1 by subscripts 2), except that the fluid force would
be negative since the fluid force opposes the displacement, that is, the sign would be negative.
In addition, the fluid volume passing through 1 in time At is equal to the fluid volume passing
through 2 during the same At.

As aresult, the net work performed by these forces during time At may be expressed as

W= (P, - P)AV (6.1)

The work will be divided into two parts: one part that changes the kinetic energy of the fluid
and another part that changes the gravitational potential energy. Assuming that Am is the mass
passing through the pipe during At, the change in kinetic energy, AK, can be expressed as

AK = %(Am)v% - %(Am)v% (6.2)

The change in potential energy may be written as
AU = Amgy, — Amgy, (6.3)
where g is the acceleration of gravity. By applying the work-energy theorem (W =
AK + AU) to the fluid volume we obtain
- 1 il
(Py — . P)AV = E(Am)v% = E(Am)’u% + Amgy, — Amgy, (6.4)

Since p = Am/AV, one may divide by AV;with some rearrangement, equation 6.4 reduces to

1 1
Py +5pv1 + pgyy = Py + 593 + pgy, (6.5)

Equation 6.5 is Bernoulli’s equation as typically applied to a nonviscous, incompressible fluid
during steady flow. It is often expressed as

1
P+ Epv2 + pgy = C (6.6)

This states that the sum of the pressure (P), the kinetic energy per unit volume of fluid (3pv?),
and the potential energy per unit volume (pgy), has the same value at all points along the
streamline of flow. For a fluid at rest, this may be simply expressed as

AP = pg(y, — y;) = pgh (6.7)

Some interesting applications of Bernoulli’s equation include: the Venturi tube; streamline
flow around an airplane wing; atomizers such as those used in perfume bottles and paint-
sprayers; and vascular flutter associated with arterial blood flow (related to blood vessels and
heart valves within humans).
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Figure 6.2 Efflux, v, from hole in side
of container; v, = (2gh)2 A is cross-sec-
tional area of the exit hole (subscript 1)

Pp=F @ 2y and container (subscript 2), y is fluid
Ar level to efflux hole (subscript 1) and con-
tainer (subscript 2), P is pressure in con-
T tainer (point 2), and P, is atmospheric

h pressure or pressure at outlet (point 1).

QUESTION 6.1

A large tank is filled with water; it develops a hole in its side 20 m below the water level (shown in
figure 6.2). If the rate of flow from the hole is 4.2 X 107> m%s: (a) What is the speed at which water
leaves the hole? (b) What is the hole diameter?

QUESTION 6.2

Geyser surges result from water becoming superheated and flashing to steam as pressure is first re-
leased. Using our imagination to idealize the famous geyser “Old Faithful” in Yellowstone National
Park in Wyoming as a steady water spout, we can apply Bernoulli’s equation to determine the velocity
of the water as the geyser erupts, as well as determining the pressure in the heated chamber below
ground. The height of the eruption typically reaches 40 m above ground surface. (a) What is the veloc-
ity of the water as it leaves the ground? (b) What is the pressure (above atmospheric) in the heated
underground chamber?

6.2 TORRICELLI'S LAW

Because all fluids have mass, an unbalanced force that acts on the particles of a fluid will
cause an acceleration of those particles, according to Newton’s law of motion. An example of
this can be seen in any water-supply system; this is especially true of those systems that use
large tanks for storage. Such tanks can either be pressurized, or be placed at a higher eleva-
tion than the discharge point (e.g., a gravity system). Figure 6.2 shows a tank containing a
fluid of density p with a hole in its side at distance y, from the bottom; here we assume the
tank is not open to the atmosphere, so that the air space above the fluid level in the tank is
maintained at a pressure P. By also assuming that the cross-sectional area of the tank is large
compared to the cross-sectional area of the hole in its side (4, >> A,), the fluid will be at
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rest at the top (point 2). If we then apply Bernoulli’s equation to points 1 and 2, and noting
that P = P, at the hole, we obtain

1
P+ EPU% + pgy; = P, + pgy, (6.8)

however, since y, — y,; = h, equation 6.8 can be rewritten as

e \/ﬁip_il) 4 Dk (6.9)

The flow rate from the hole can be obtained by multiplying the cross-sectional area of the
hole times its velocity, A;v;. If P is large (in a pressurized system) compared to atmospheric
pressure, the term 2gh in equation 6.9 can be neglected; the speed of efflux in this instance is
primarily a function of P. For systems that are open to the atmosphere, P, = P, and
v, = (Zgh)l/ 2. This implies that the speed of efflux for the open system is equal to the speed
gained by a free-falling body through a vertical distance #; this is known as Torricelli’s law.

Flow through the hole described above is different than if that same flow were through
a pipe, because the confining walls of the pipe offer resistance to flow (assuming the fluid has
viscosity). Because of viscosity, head losses occur in real systems due to frictional losses. The
magnitude of these frictional losses depends upon whether flow is laminar or turbulent as
defined by the Reynold’s number. The flow system in figure 6.3 shows three equally spaced
manometers at points C,—Cj along a pipe. The reservoir is held at a constant level and veloc-
ity of flow through the pipe is controlled by the valve at point C,, such that constant pressure
and steady flow are maintained. If the valve is closed, the fluid level will be equal in all
manometers (point AB), hence & (AC;) will indicate an equal pressure at all points C;~C,
along the pipe. However, once the valve C, is opened to a certain setting, steady flow will be
achieved through the pipe and the height of fluid in each manometer will be at different lev-
els, as indicated by points 1,2, and 3. The greater the flow (i.e., the more open the valve), the
greater the drop of the manometers wll be. As discussed in chapter 4, we know that the height
of water in each manometer is a measurement of the pressure at points C;~C, in the pipe.
Because the system is at constant pressure and steady flow, the straight line along points 1-3
in figure 6.3 indicates a uniform pressure drop in the manometers. Now recall that the con-
fining walls of the pipe offer resistance to flow, thus, the drop in pressure indicated by hsin
figure 6.3 is due to fluid friction, termed the friction head. For varying flow velocities

hy = Ko? (6.10)

where K is the proportionality constant (to be discussed in chapter 7) and v is fluid velocity
in the pipe (m s™'). Equation 6.10 depends on the Reynolds number (Re); for Re < 2,000,
h, = Kv.

. Figure 6.3 shows an immediate drop in fluid level from point A of the reservoir to point
1 in the first manometer, which is indicated by #,,. Since equation 6.10 implies that friction
head is proportional to the velocity squared, then from Torricelli’s law, the drop in potential
energy is due to the drop in fluid level from A to C,.This drop must be converted into kinetic
energy in the fluid, and since v; = (2gh)"?, then

h, = — (6.11)

where 4, is the distance from point A to point 1, termed the velocity head in units of length
(m). The pressure at any point from C,—C; is determined from the height of fluid in the
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Manometers Figure 6.3 TIllustration of
P— - rr%anom'e'ter levels at.tachc?d to
Flow — p pipe exiting reservoir. Points 1, 2,
e A B and 3 represent fluid levels in
--------- A = manometers located at points C;,
A C,, and C;, while A,,, h,, h, refer to
hy velocity head, pressure drop, and
pressure head at point B; A is
Intersection | fluid level at point A.
=~ v2/2g BN
1 N—
h
= '
2
Reservoir

Cs

Pipe

valve

Discharge

manometer at the respective point such that
h,=h — (h, + hy) (6.12)

where £, is the pressure head (m) and £ is total head (m). An important point to remember
here is that when fluid velocity increases, pressure decreases; and as fluid velocity decreases,
pressure increases. In nature, an example of this would be when a wide, gently flowing river
passes through a narrow canyon—the velocity of flow increases, but the pressure in the river
decreases.

QUESTION 6.3

Calculate the pressure at a depth of 500 m beneath a lake’s surface. Assume the density of water is
1.0 X 10° kg/m’ and that atmospheric pressure, P,, equals 1.01 X 10° Pa.

QUESTION 6.4

Water behind a dam of width w is filled to a height H. What is the resultant force on the dam? Give a
general solution, not a numerical one.
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QUESTION 6.5

Using figure 6.2 and the application of Bernoulli’s equation to Torricelli’s law (as given in equations 6.8
and 6.9), determine the velocity at which fluid will exit the small hole (point 1) on the right side of the
tank when the fluid level is a distance % above the hole. In this case you are seeking a general solution,
not a numerical one.

6.3 POISEUILLE'S LAW

Various models have been developed to investigate the effects of porosity and pore-size dis-
tribution on fluid flow. The best known is perhaps Poiseuille’s law, which describes the laminar
flow of a fluid in a small cylindrical tube. The tube radius in this case is that of a capillary tube,
analogous to pore radius within soils and geologic material. Poiseuille’s law states that the dis-
charge rate, Q, of a fluid in a cylindrical tube of small, fixed radius, R, is dependent upon the
driving force acting on the fluid as well as upon the internal friction forces between molecules
within the fluid, characterized by the fluid viscosity, . On a volume basis, the gradient of the
hydraulic potential, —dP,/dx, is the driving force, considered constant for this discussion.

Fluid viscosity may be explained with the aid of figure 6.4, which shows a fluid layer
trapped between two parallel plates of solid substance. If one moves the lower plate at a
constant velocity, v, relative to the upper plate, the velocity of the fluid at the boundary
with the upper plate will be zero, but also equal to v at the boundary of the lower plate, be-
cause of adhesive forces. Assuming the steady velocity between the two plates, v(y) will in-
crease linearly with the distance y to the lower plate. The internal friction force per unit
area within the fluid, 7, tends to retard the movement of the plate. To maintain the veloc-
ity, v, of the plate, the force per unit area applied to the plate must be equal and opposite
to 7. The force is inversely proportional to the distance, 4, between the two plates, also im-
plying that the frictional force per unit area, 7, is proportional to the velocity gradient
dv/dy. In this case, the proportionality factor is the fluid viscosity, , which may be ex-
pressed such that

dv

As shown in figure 6.5, the rate of discharge from a small tube can be determined when
the velocity distribution in the tube is known as a function of r. Since we assume laminar flow,
the velocity of the fluid at the wall of the tube is zero, and has a maximum value in the cen-
ter of the tube. Velocities from zero to maximum will depend on the radial distance from the
center of the tube, r; equal velocities are present in concentric rings around the center. Thus,
according to Poiseuille’s law, the rate of discharge of a small cylindrical tube may be ex-

pressed as
r*[dP, AP,
= =]t e e 6.14

Q 8 [ dx } o 877[ h } i
where Q is the rate of volume flow (m® s7'), n is the coefficient of viscosity of the fluid
(wPa s71), r is the tube radius (m), 4 is the tube length (m), and P is the pressure (Pa). Note
here that P = pgh;often P is expressed as AH. If AH is used, the numerator on the right-hand
side of the equation (within the brackets) must be multiplied by pg. Normally, the pressure
units would then be in the cgs system expressed as dynes cm ™2, and the resulting viscosity
would have units of poise or dyne-sec cm ™% all length units would be expressed in terms of
cm rather than m. Equation 6.14 states that the rate of fluid flow through a cylindrical tube is
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Figure 6.4 Flow between
two parallel plates to illustrate
viscosity, assuming a no-slip

Parallel plates  condition along plates. x is dis-

tance, v is velocity, 7yis shear
stress (y; = 1 dv/dx) exerted
in direction x on fluid surface,
y is distance of v, above refer-
ence, and [ is distance between
plates (L).

Section 6.4
0 g
= Y1
T A
x —dpP,
dx
B
h v,
—
< y
- Y
-~

Figure 6.5 Laminar flow of a liquid
in a tube illustrating Poiseuille’s law.
The rate of discharge can be calculated
when the velocity distribution in the
tube is known as a function of . Due to
friction between adjoining liquid layers
and considering a liquid cylinder in the
tube, r is radial distance from center, y,
is shear stress (as defined in figure 6.4),
R is tube radius, and v, is the velocity of
fluid at radial distance r.

directly proportional to the fourth power of the radius of the tube and also to the pressure
difference, but is inversely proportional to the viscosity of the fluid and the length of the tube.
Poiseuille’s law is true only when: (1) flow is steady and laminar; (2) the pressure is constant
over every cross-section (no radial flow); and (3) fluid in contact with the tube wall is sta-

tionary.

QUESTION 6.6

An experiment to measure water flow is being conducted in a vertical capillary tube. At the bottom of
the tube the water pressure, P, (potential), is 7.0 kPaj; at the top of the tube water pressure is 1.0 kPa.
Assuming that n = 107%kPa s,/ = 0.5 m, and the diameter of the capillary tube is 3.6 X 10~* m, what
is the rate of flow of water, Q, through this capillary tube?

6.4 FLOW CHARACTERISTICS: LAMINAR AND TURBULENT FLOW

The movement of a fluid can be characterized as either laminar or turbulent. If each particle
of the fluid flows along a smooth path and the paths of each particle do not cross each other,
the flow is termed laminar. As a result, the velocity of the fluid at any point along its flow-path
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remains constant in time. However, above a certain critical speed, fluid flow becomes turbu-
lent. Turbulent flow is an irregular flow often characterized by small whirlpool-like regions.
A familiar example of this would be the flow of a stream around a rock which projects above
the stream’s surface. Upon close observation, one would see the small whirlpool-like regions
and eddy irregularities around the rock.

The flow path taken by a fluid particle in laminar flow conditions is termed a stream-
line (see figure 6.6). For laminar flow, no two streamlines may cross each other: if they do,
a fluid particle could move either way at the crossover point, and the flow would be termed
turbulent.

Flow of water in soils and other geologic material can occur in three dimensions, as de-
termined by the potential gradient of the system. If one assumes steady, one-dimensional
laminar flow of a fluid (incompressible) along a solid plane surface, the velocity profile of this
flow would be as illustrated in figure 6.7. Since the distance to the wall, x, is at a right-angle
to the velocity, then at x = 0, the velocity v = 0, and v increases with distance from the wall
but at a decreasing rate; at a certain distance from the wall, the fluid velocity will reach a max-
imum. Considering phases 1 and 2 in figure 6.7, which are at a distance Ax apart, the velocities
along the phases will be v; and v,; if v, > v, then Av = v, — v;. Hence, the velocity gradient

——/\—> Figure 6.6 Illustration of streamlines.

(@) (b)
Streamline tube fluid particle Streamline around
at x follows tangent of an object
streamline at velocity v

Figure 6.7 Illustration of velocity
profile (left) and velocity gradient
(right); v is velocity, x is distance, and
dv/dx is velocity gradient, that is,
change in velocity with change in
distance.

dvldx

Phase 3

X ST X ——

Distance from wall velocity profile Velocity gradient
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dv/dx may be expressed as
Lo lim )
dx Ax—=0 Ax

(6.15)

The velocity gradient as illustrated in figure 6.7 is the reciprocal of the slope of the velocity
profile. Since x is the measured distance perpendicular to the direction of flow, and from the
definition of velocity we may state that

dy dy
w_Ya)_da)
drdx dt
where dy/dx is the shear at phase 2. Foregoing significant detail, the velocity gradient is the
time rate of shear. As a consequence, when dy = 0, the shear vanishes and the velocity gra-
dient also vanishes. Because real fluids resist shear, shear forces must always exist whenever
there is a time-rate of shear. For more in-depth knowledge of shear and shear stress, the
reader is referred to the literature discussing the science of rheology and related behavior
(see the suggested readings section at the end of the text).

Osborne Reynolds was the first to demonstrate the difference between laminar flow
and turbulent flow in 1883. Named in his honor, the Reynolds number, R,, expresses the ratio
of inertial forces to viscous forces during flow and is widely used to differentiate between
laminar flow (low velocities) and turbulent flow (high velocities). For example, for a
Reynolds number of value less than about 5, a condition of linear laminar flow exists; for val-
ues of about 5 to 100 the flow is termed nonlinear laminar, and for values greater than 100,
flow is turbulent (Bear 1972). These general classifications assume that flow is occurring
through a medium, and not a pipe or open channel. For Reynolds numbers less than about
5, viscous forces dominate; for values greater than 5 (up to about 100), inertial forces domi-
nate. At values greater than 100, laminar flow is assumed to give way to turbulent flow. The
Reynold’s number is often used to determine the magnitude of friction loss within a system.

For flow through soil, the Reynolds number is expressed as

(6.16)

R, = pal (6.17)
n

where p is the fluid density (kg m~?), g is the flux density (some hydrologists refer to this as
the specific discharge; m s™!), / is a representative length-dimension of the medium in ques-
tion (usually taken as the pore diameter or mean-particle diameter), and 7 is the viscosity
(kg m™" s7%; converted from Pa s™! listed in Table 6.1 for convenience of calculation). If Re
remains constant fluid flow will be steady. For a detailed discussion of the Reynolds number
and its application to flow through soils, the reader is referred to Bear (1972).

QUESTION 6.7

Ten cubic cm of water at 25 °C is passed through a steel capillary tube 30 cm length and 1.5 mm diam-
eter in 4 seconds. What is the pressure required, and the Reynold’s number?

In this chapter we discussed the basic principles of water flow in soils, and how Bernoulli’s
expression relates pressure to fluid velocity, elevation, and conservation of energy when
applied to a perfect fluid. In addition, the state of a fluid at any point may be characterized
by four quantities: (1) pressure, P; (2) velocity, v; (3) elevation, 4; and (4) density, p. Also
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described was Torricelli’s law, which states that the speed of efflux for an open system is
equal to the speed gained by a free-falling body through a vertical distance 4. Additionally,
Poiseuille’s law, describing the laminar flow of a fluid in a small cylindrical tube, was dis-
cussed. Poiseuille’s law states that the discharge rate, Q, of a fluid in a cylindrical tube of
small, fixed radius, R, is dependent upon the driving force acting on the fluid as well as upon
the internal friction forces between molecules within the fluid, characterized by the fluid vis-
cosity, n. Finally, it was discussed how the movement of a fluid can be characterized as either
laminar or turbulent. If a particle of fluid flows along a smooth path and the path of this par-
ticle and others do not cross, the flow is termed laminar, and the velocity of the fluid at any
point along its flow-path remains constant in time. Turbulent flow was defined as an irregular
flow, often characterized by small whirlpool-like regions.

ANSWERS TO QUESTIONS

6.1. Assume A, is the cross-sectional area of the hole and v, is the velocity of fluid exiting the hole,

then A, >> A, and v, << v;. Also assume v, =~ 0 and P, = P, = P,. Thus,

(@)

PV} pv5
Pi+ St +pgy = P+ SE+ gy
v = [28(y, — yDIY? = [2(9.80)(20)]"? = 19.8 m/s.
(b) The flow rate is A,;v; = (7d*/4)(19.8) = 4.2 X 10~° m%s. Solve for d to obtain 1.64 X 10~ m
or 1.64 mm.

6.2. By utilizing Bernoulli’s equation, the pressure is converted entirely to kinetic energy, which is
converted into gravitational potential energy. Thus,

1
AP—)Epv2—>pgh

where p = 1000 kg/m’. Hence, (a) pgy = (10°)(9.80)(40 m) = 1/2 pv?; solving for v, we obtain
v = 28 m/s. (b) AP = (10°)(9.80)(40 m) = 3.92 X 10° Pa or 3.87 atm.

6.3. To obtain the solution we may use the formula P = P, + pgh. Thus, P = (1.01 X 10° Pa) +
(1.0 X 10° kg/m®)(9.80 m/s?)(500 m) = 5.0 X 10° Pa. This is roughly 50 times greater than
atmospheric pressure.

6.4. For the solution to this problem, the equation used in question 6.1 becomes P = pgh = pg
(H — y), and to find the force exerted by the fluid over a specific surface area AA we may use

AF o5 dF,
P= lim — =—
MB0AA | dA
Consequently, the force is given by dF = PdA = pg(H — y)w dy and the total force on the dam is

H
1
F=deA=f pg(H—y)wdy=§png2
0

Hing: draw a diagram of the dam’s surface, shade to the height of a chosen water level, then select
a small strip across the width of the shaded face to calculate pressure. Remember, the total force
on the dam must be obtained from the expression F = [PdA, where dA is the area of the small
strip. As a result: w is the dam width; H is the total height of water; 4 is the height of water above
the small strip; y is the depth of water below the small strip; and, of course, dy is the thickness of
the small strip.

6.5. This is a classic case of Torricelli’s law. First, assume the tank is large in cross-sectional area com-
pared to the exit hole, that is, A, >> A,. Thus, the fluid will be relatively at rest at the top of the
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tank (point 2). Now, applying Bernoulli’s equation to points 1 and 2 and at the exit hole P = P
we obtain

1
P, + Spvi + pgyy = P + pgy,

however, since y, — y; = h, this will reduce to

|2(P — ;
Y = 2—(—p‘—Pa—)+2gh

Since A, is the area of the exit hole, the flow rate from this hole is 4,v,. When the pressure P is
large compared to atmospheric pressure, the term 2gh can be neglected and the speed of efflux is
primarily a function of P. Also, if the tank is open to atmospheric pressure, P = P, and
v, = (2gh)"2.

6.6. Using Poiseulle’s law (equation 6.14), we find that Q = [m(1.8 X 107* m)*/(8)(107° kPa - s)] X
[(7.0 kPa — 1.0 kPa)/0.5 m] = 4.947 X 10™° m%s, or 0.297 mL/min.

6.7. The pressure, P, required to force the fluid through the capillary tube is

P = (8Vin)/(mr')
= [(8)(10 X 107° m?)(0.30 m)(8.90 X 10* kg m™*s7Y)]/[m(7.5 X 10™*m)* (4 5)]
=5373Nm™
To calculate the Reynolds number, R, = pql/n, we must first obtain g, thus
g = [(10 X 107* m®)/(4 5)]/#(7.5 X 10*m)? = 1.4147 m s,
R, = (1.5 X 107> m)(1.4147 m 57%)(0.99708 x 10° kg m~%)/(8.90 X 10~ kg m™! S
= 2377.1.

A value of this magnitude would indicate turbulent flow.

ADDITIONAL QUESTIONS

6.8. You have a field-study site near the western coast of the United States. An oceanographer asks
your assistance in calculating the pressure 1000 m beneath the ocean’s surface. Assume water
density is 1.0 X 10° Kg/m® and P, = 1.01 X 10’ Pa.

6.9. At what depth in a lake is the absolute pressure three times the atmospheric pressure?

6.10. In Greenland, the ice sheet is 1 km thick. What is the pressure on the ground beneath the ice?
Assume p,., = 920 kg/m>.

6.11. You are calibrating pressure transducers in the laboratory with a u-shaped tube (see figure below).
What is the absolute pressure, P, on the left side if & = 20 cm? What is the gauge pressure?
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6.12.

6.13.

6.14.

6.15.

6.16.

6.17.

The rate of flow through a horizontal pipe is 1.5 m*/min. What is the velocity of flow at a point
where the pipe is (a) 5 cm and (b) 2 cm?

Water flows through a 6.35-cm diameter hose at a rate of 0.012 m%s. At what velocity does water
exit the nozzle at the end of the hose?

A Venturi tube can be used as a fluid flow meter. If P, — P, = 21 X 10°Pa (=3 1b/in?), what is
the flow rate (m%s) if the outlet radius is 1 cm, and inlet radius of the tube is 2 cm? Assume fluid
density is 700 kg/m?.

You are working with an above-ground storage tank (AST) which is filled to a height A,. If this
tank is punctured at a height / from the bottom of the tank, how far from the tank will the stream
land? Assume £, = S5mand & = 2 m.

What is the Reynolds number for flow of a liquid in a 1.2-cm diameter soil pore? The fluid is from
an oil spill: p = 850 kg/m?; viscosity is 0.3 Pa - s; and velocity is 3.0 X 107> m/s.

You determine a fluid viscosity at 40 °C by measuring flow rate through a capillary tube at a
known pressure difference between the ends. The capillary radius is 0.70 mm, length is 1.5 m.
When a pressure difference of 1/20 atm is applied, a volume of 292 cm? was collected in 10 min-
utes. What is the viscosity of the fluid? Identify the fluid.



