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Unsaturated Water Flow
in Soil

INTRODUCTION

So far in this text, we have discussed the physical properties and characteristics of soil,
and why these properties are important in chemical transport. We also discussed the be-
havior of clay-water systems as well as the importance of electrokinetic properties, ion
exchange, swelling, dispersion and other parameters associated with clay behavior. We
then discussed the aspects of potential and thermodynamics of soil water, including cap-
illary theory, chemical and matric potential, and hysteresis. A brief review of the chemical
properties associated with soil water and the basic principles involved in water flow fol-
lowed, then a very brief review of saturated water flow, including various flow cases that ad-
here to (or can be explained by) Darcy’s Law. Although water flow in saturated soils and
other media is important, soils are usually not saturated with fluid in typical vadose-zone
investigations. As a consequence, the principles previously discussed are necessary in order
to understand the concepts involved in water flow and the transport of chemicals in the un-
saturated zone.

In chapter 7, we discussed how saturated flow depends on a positive hydraulic gradi-
ent, that is, a combination of the gravitational (elevation) and pressure potentials of the fluid
that will cause water flow from high potential to low potential. Within the unsaturated zone
the pore spaces are not completely filled with fluid, thus, the effective conducting pore space
is much smaller than if the medium were saturated and the pore space was normally filled
with both liquid and gas phases. Water flow under these conditions is termed unsaturated
flow.

The unsaturated zone itself can be either very shallow or very deep, depending on geo-
graphic location. In the eastern United States, it is typical to find shallow water tables in
which the root-zone portion of the unsaturated zone may be of major concern, especially
since the presence of plants and greater populations of bacteria and other microbes make
this shallow zone (usually about 1 m) much more dynamic. In contrast, the vadose zone in the
western United States is deeper, anywhere from many meters to hundreds of meters thick.
A schematic of the unsaturated zone is shown in figure 8.1. Regardless of depth the princi-
ples involved are the same, although deeper vadose zones generally require more expense in
instrumentation and data collection.

Because soil pores are generally filled with both liquid and gas within the unsaturated
zone, the degree of saturation refers to the portion of pore volume filled with water. Also,
since the largest water-filled pores empty out first, the unsaturated hydraulic conductivity
decreases rapidly as the volumetric water content decreases. This is due to the fluid that is
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Figure 8.1 Simplified schematic of unsaturated zone processes

constrained to smaller flow channels as water content decreases. The channels not only be-
come narrower, but the flow path becomes more tortuous and fluid can literally flow as a hy-
dration film from one position to the next. Fluid flow in the unsaturated zone primarily is due
to water content, matric potential gradient (also known as soil pressure or capillary poten-
tial), and gravitational potential. As opposed to a positive head (as discussed in saturated
fluid flow), flow in the unsaturated zone is usually by a negative gradient, as well as the other
parameters mentioned above. (See chapter 4 for a review of potential.)

In this chapter we discuss the validity of Darcy’s Law for unsaturated conditions; fac-
tors affecting unsaturated conductivity; basic flow equations for unsaturated flow; and some
fundamental mathematics that we use to solve the general unsaturated flow equation. The
general continuity equation (as derived in chapter 10, question 10.2) must be altered to de-
scribe unsaturated flow fully; this alteration results in a nonlinear differential equation. A
nonlinear differential equation is one in which the sum of the independent solutions, each
multiplied by an arbitrary constant, does not bring about a solution to the equation. Due to
this nonlinearity, the mathematics of unsaturated flow are highly complex. An additional
major concern is that Darcy’s Law may not apply for all unsaturated flow conditions.
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8.1 VALIDITY OF DARCY’S LAW FOR UNSATURATED CONDITIONS

As discussed in chapter 7, we express Darcy’s Law as
q = —K(0)i (8.1)

where g is the flux density (volume of water flowing across a unit area per unit time), K(0)is
the conductivity (and in this case is termed the capillary conductivity to differentiate it from
saturated hydraulic conductivity), and i is the hydraulic gradient (typically expressed as
AH/AL). Equation 8.1 implies that if K(6) # 0 and a hydraulic gradient exists, flow will
occur at a rate proportional to K(6), assuming i is constant. If a gradient (no matter the size)
is applied to fluid in an unsaturated medium and the water does not move, or the velocity (v)
is not a straight-line function of the hydraulic gradient, or K does not vary as 6 varies, then
Darcy’s Law will not apply and the fluid is termed non-Newtonian in behavior. However, flu-
ids not conforming to Darcy’s law are not necessarily non-Newtonian (Bear 1972). Often, the
fluid simply does not flow until the hydraulic gradient reaches a certain value. In this case, the
value the gradient reaches when flow begins is called the threshold gradient.

We do not understand fully the extent to which non-Darcy flow exists in soil, but we do
know that many forces affect the flow of water within a medium. Among these is the hydrogen
and covalent bonding between the water and clay particles, that in some instances is sufficient
to prevent flow (in the presence of a very small hydraulic gradient). Additional forces can in-
clude: ion adsorption; double-layer thickness; and streaming potential (all discussed in chap-
ter three). Soil structure factors such as the presence of macropores (cracks, worm holes, etc.);
preferential flowpaths (areas with lower bulk density than the surrounding soil matrix); fin-
gering; very structured and aggregated media; sand lenses; and other heterogeneities, may also
lead to non-Darcy flow. However, understanding is still limited on the effects of these condi-
tions on unsaturated flow and transport, although under investigation for more than a decade.

The continuity equation, while commonly used to simulate unsaturated flow and trans-
port, does not consider the validity of Darcian flow. As a result, the continuity equation (in
three dimensions)

_(%+?_@+9_&)=ﬂ’ (82)
ox ay 0z ot

can be used without having to consider the limitations placed on Darcy’s Law. However,
when non-Darcy flow occurs (whether due to fluid property or structural effects), models
based on the continuity equation are quite poor in their prediction of water and solute trans-
port. When this and other complex relations (between matric potential, volumetric water
content, and unsaturated hydraulic conductivity) are taken into account, vadose-zone exper-
imentation frequently involves extensive instrumentation, rigorous mathematics, and meth-
ods of analysis that typically include numerical approximations for solution of a problem.

8.2 FACTORS AFFECTING UNSATURATED HYDRAULIC CONDUCTIVITY

We discussed several flow cases for saturated-flow problems in chapter 7. To show factors af-
fecting unsaturated water flow, we begin this chapter discussing an unsaturated flow system
where the pores are filled with a mixture of air and water (i.e., the pores are only partially
water filled) and water flows under the influence of a negative suction or matric potential.
A schematic of the flow system is shown in figure 8.2. For this case, the hydraulic head H at
the inflow (point A) is —h; + z;, where —A is the matric potential and z is the gravitational
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potential; the hydraulic head H at the outflow (point B) is —, + z,. Subtraction of the two
heads will give a change of hydraulic head: AH = H, — H, = —(h; — h,) + (z; — 2,).

Assuming a constant matric potential along the column, we surmise that flow is steady,
since the column is short and the flux through the column follows Darcy’s law (equation 8.1).
However, for an unsaturated medium (even in a short column but especially for longer soil
columns), it is unlikely that the gradient is constant along the column length. As a rule, this is
a result of non-uniform wetness along the column. Consequently, the volumetric water con-
tent, matric potential, and unsaturated hydraulic conductivity all vary with distance in the
column. Figure 8.3 represents this graphically, and also illustrates that as matric potential de-
creases (increased suction), the suction gradient usually increases with a subsequent decrease
in capillary conductivity along the column. Since the hydraulic gradient along the column
length is not constant, we do not obtain the capillary conductivity by dividing the flux by the
gradient (AH/AL), as we do in a saturated system. Instead, the flux has to be divided by the
specific gradient at a given location; thus, we have to obtain a flow solution iteratively.

We have discussed a soil column that is a single layer, basically of one soil type up to this
point. We now consider what happens to matric potential and moisture content in a stratified
column, which is more applicable to field situations in which there is a layered profile. Using a
layered column with a coarse media such as sand for layer one and a fine medium like clay for
layer two (in contact with a water table), and assuming a steady downward flow, we find a dis-
tinct discontinuity in moisture content at the interface of the two layers, although the flux rate
is constant throughout the column (see figure 8.4a). The flux rate is accommodated by a
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greater tension in the fine soil (figure 8.4b), since enough pores remain saturated at that ten-
sion to transport the flux by a gravity gradient; whereas in the coarse soil, fewer pores are
available at the same tension. Thus, even though the coarse soil has a higher saturated hy-
draulic conductivity, both soil water content and unsaturated hydraulic conductivity de-
crease more rapidly with increasing tension than for the fine soil (figure 8.4a). When the fine
soil overlies the coarse soil (figure 8.4b), the soil suction decreases at the interface of the two
layers, since water enters the coarse soil only when soil suction is reduced to that of the pores
in the coarse soil. Typically, a ponded head or capillary fringe must build a positive pressure
to allow water to flow from the fine to the coarse layer, meaning that volumetric water con-
tent increases and matric potential, i,,, decreases. Comparing figure 8.4a to 8.4b, we see that
when 6 decreases, matric potential decreases—that is, it becomes more negative (has a
greater suction). When 6 increases, matric potential increases (i.e., approaches zero). We
show the soil moisture characteristic curves for these two media in figure 8.5.

A general relation for capillary conductivity versus matric potential for three different
(non-layered) classes of soil is shown in figure 8.6. Initially, the coarser-textured soil has a
higher K(6); however, as suction increases the finer materials have the higher K(6).

A medium such as sand generally has a uniform distribution of pore sizes (i.e., the
pores are fairly uniform in size throughout the medium), which yields a fairly uniform mix-
ture of soil-pore water and air. A well-structured soil that has large aggregates, cracks, macro-
pores, and other types of voids is in direct contrast to this. In the well-structured medium,
there are more phases of desaturation; desaturation is not uniform with increased suction.
For example, much of the initial water flow is through larger macropores during significant
recharge events. Although water can move through the aggregates, primarily it moves
through the larger macropores, the size and distribution of which determines the capillary
conductivity of the medium. However, with only a small suction these larger pores empty
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Figure 8.6 General relation for cap-
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very rapidly, leaving interped and inter-aggregate pores still saturated. It is at this phase that
the water within the medium begins to move as hydrated-water films since the area of con-
ductivity (i.e., the number of pores conducting water) rapidly decreases. Thus, even though
the aggregates are saturated, the overall conductivity of the entire system is very low. As we
discussed earlier, it is unlikely that full saturation is achieved due to air entrapment (likely to
occur during significant recharge events). This discussion shows that Darcy’s law is non-
linear under unsaturated conditions.

Unsaturated hydraulic conductivity is affected by the presence of swelling clay soil. As
water content decreases with increasing suction, the soil shrinks, reducing pore size and then
K. Good examples of this are well-structured vertisols, that have a high K during a state of
low-moisture content but due to swelling after a significant recharge event, are reduced dra-
matically, to almost zero. Therefore, in general terms, the factors that can cause distinct re-
ductions in unsaturated conductivity with an increase in soil suction are: reduction in pore
conductivity due to water loss from the largest pores; reduction in effective porosity; in-
creased tortuosity; as well as the fact that water near clay surfaces can have a viscosity four
times higher than in bulk solution (see chapter 3). Temperature effects, more pronounced at
water contents from about 0 to —30 kPa, result in higher K at higher temperatures, due to de-
creased viscosity and surface tension. Because of clay-water interactions as discussed briefly
above (and in chapter 3), the effect of temperature is less dominant at low-water content.

8.3 DEVELOPMENT OF UNSATURATED FLOW EQUATIONS

The conventional form for Darcy’s law does not describe adequately water flow in the va-
dose zone, due to the rapid decrease of both hydraulic conductivity with decreasing water
content and total cross-sectional area available for water flow in an unsaturated medium.
Consequently, it has been extended; this extension assumes that K is a function of matric
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potential and/or volumetric water content. However, which of these to use is still somewhat
controversial; the typical form extends Darcy’s law as a function of water content. This is due
to the difficulty obtaining a specific value of 6 for a particular value of i, unless we know a
great deal about the hysteresis of the medium in question. Therefore, extending Darcy’s law
and writing hydraulic conductivity as a function of theta [K(8)], makes the problem of hys-
teresis avoidable, primarily because K(0) is less hysteretic than K(i,,). Thus, in tensor form,
the extension of Darcy’s law is written as

q = —K(6)VH (8.3)

where VH is the hydraulic gradient and all other parameters are as previously discussed. It is
important to remember that H = & + z, where % can be expressed as the suction or matric
potential (i, ). As a result, we rewrite equation (8.3) as

qg=—K(O)VHh + 2) (8.4)

For a one-dimensional vertical coordinate system, equation (8.4) is rewritten as

oh
= = KOst ;
a= -k +1) 8.:5)
Also, should we choose to use the matric potential rather than theta, then we obtain

g = —K(9)<1 # %) (8.6)

Equation 8.6, assuming ¢ is a single-valued function of 6, 3y,,/dz is rewritten as follows, using
the chain rule of calculus:

oY, _ di, 30 (8.7)

9z dé 9z
The first term on the right-hand side of equation 8.7 is the inverse of the specific water ca-
pacity, that is, the reciprocal of change in water content per unit change in soil suction or ma-
tric potential. The second term is the water-content gradient, with respect to depth.
By substituting equation 8.7 into equation 8.6, we have

A _ 9%, 99
g = K(G)(l 0 az> (8.8)
which is written as
B sl 5 3y, 08
gi— - K() K(B)( _86)_62 (8.9)

Equation 8.9 is Richards’ equation (Richards 1931), and is written so that the hydraulic dif-
fusivity term is readily introduced into the basic flow equation, as described below.

According to Poiseuille’s law (discussed in chapter 6), flow is related to pore radius.
Consequently, if the conducting pore size is reduced by one-half, the capillary conductivity
will be reduced by one-quarter. As more water is removed so that transport is by hydrated
films, the effective path length over which the fluid travels is lengthened, that is, the fluid can-
not go straight through the medium but must meander around individual particles that are
covered with the hydrated-water films. This results in a tortuous path of flow that decreases
conductivity further. As continuity fails within the pore system, no fluid flow occurs. At this
point, only vapor transport occurs within the system; however, vapor flow is usually minimal
unless there are significant temperature gradients.
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By considering a bundle of capillary tubes similar to those of Poiseuille’s law, but tak-
ing into account the tortuosity of the medium, we rewrite a generalized form of Kozeny’s
equation to determine K, such that

where p,, is density of water (g cm ), g is the gravitational constant, k' is the pore-shape factor
(ranging from 2 t0 2.5), 1 is the viscosity of water (Pa - s) sis the specific-surface area (ratio of
total surface area of solid to volume of same solid; cm* cm ), ¢, is the effective porosity (area
of conducting pore or channel per unit area of cross-section—sometimes expressedasf — ¢,;
where ¢, is the residual moisture content), L is length of column or profile (L),and L, is the ef-
fective length (L). The ratio of length to effective length may be determined by

I
(Z) e (8.11)

where E; is a measurement of the electrical resistivity of the soil (S m™'—Siemens per
meter) when the pore space is filled with a liquid of known electrical resistivity, E,. Using
equation 8.10, we can account for both the pore-shape factor and tortuosity, when deter-
mining K. The generalized Kozeny’s equation 8.10 is a semiempirical equation relating K to
6 and to ¢ and is based on the assumption that tortuosity increases as a power of 1/S,,
where S, = 6 — 0,/¢ —6,; see equation 8.12f.

Since the hydraulic conductivity depends on the volumetric water content and/or ma-
tric potential, we have modified Darcy’s law for unsaturated media, with the more general
forms as expressed in equations 8.3 and 8.4 (where K is written as a function of ). Since no
universal relations are available for capillary conductivity versus soil suction or water con-
tent, several empirical relations are proposed; these relations follow.

K(y,) = 17 (Baver, Gardner, and Gardner 1972) (8.12a)
K(y,) = a(d + ¢2)! (Childs and Collis-George 1950a) (8.12b)
K
G e s e (Gardner 1958) (8.12¢)
-]
.
K, . :
Ky, = b+ yn (Childs and Collis-George 1950b) (8.124)
K(6) = a(0)" (Marshall and Holmes 1979) (8.12¢)
K(6) = Ks(%) (Brooks and Corey 1966) (8.121)
K(6) = K,exp(ay,,) (Mualem 1976) (8.12g)

K(6) = K, F [1 = 1 = (u>l/m)mT (Van Genuchten 1980) (8.12h)

where m =1 — 1/n; K() is the unsaturated hydraulic conductivity; K, is the saturated hy-
draulic conductivity for the same medium,; a, b, m, and n are empirical constants (for fine
textured media n = 1-2 and can be up to 4 or more for coarse media); i, is the matric
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potential for which K = 1/2(K)); and 6, is the residual saturation (where the moisture char-
acteristic curve goes vertical; i.e., the water content will not get much lower). Note that equa-
tion 8.12a is not used for soil near saturation, that is, where the matric potential is near zero.
Also, the relation of conductivity to matric potential depends on hysteresis, which has to be
considered in the rigorous analysis of unsaturated-flow problems. For further information
about equations 8.12a to 8.12h, we refer the reader to the respective references for each
equation. Also, equations 8.12a to 8.12h are of different categories based on the information
required to determine their coefficients (those requiring empirically developed values of K
versus 6 or ) and those based on mathematical analysis of the moisture-characteristic curve.

QUESTION 8.1

You conducted an experiment using some large sandy soil cores (97% sand) in the laboratory. The
cores were set up with a matric suction (—20 kPa) applied to the bottom, across a porous ceramic
plate. You assume that the suction applied was equal throughout the core. From soil samples taken at
the site (where the cores were extracted), you run standard texture, soil moisture, organic carbon tests,
et cetera. Using data from the soil-moisture characteristic curve in a computer program [after princi-
ples developed by Millington and Quirk (1961)] to obtain an unsaturated hydraulic conductivity curve,
you determine the following: ¢y, = 0.55 m, K, = 16.72 m/day, and the empirical constant for this soil,
n = 4.0. What is K()?

8.4 HYDRAULIC DIFFUSIVITY

Working from the previous discussion, we now introduce the hydraulic diffusivity, D, often
referred to as the soil-water diffusivity. Because both K and ¢, are assumed to be single-
valued functions of 6, D is expressed as

ay,,
D) = K(())(*d;> (8.13)
where D is expressed in units L?> T~1. Equation 8.13 is rewritten as
K(6)
D)= 2 (8.14)
(a4,

From equation 8.14 we see that D is the ratio of the unsaturated hydraulic conductivity to the
specific moisture capacity (the denominator of equation 8.14), that is, a change in volumetric
water content per unit change in matric potential. The denominator sometimes is expressed
mathematically in “shorthand” as c¢(8). The specific moisture capacity (hydraulic diffusivity)
is also considered the reciprocal of the slope of the moisture characteristic curve at the same
water content.

Substitution of equation 8.13 into equation 8.9 gives

q = D(6) Z—ZH - K(6) (8.15)

However, if we were to express D for horizontal flow in which the effects of gravity can be
neglected, then equation 8.15 is rewritten as

a6
= —-D(6) — 8.16
a=-D(O) (8.16)
which expresses a measure of moisture flow due to a moisture or specific water-content gra-

dient. Equation 8.16 is analagous to Fick’s law of diffusion or Fourier’s law of heat flow. How-
ever, we have to remember that equation 8.16 is written assuming that K, ¢,,, and (dy,, /d6)
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are unique or single-valued functions of §—not exactly true for unsaturated flow because of
hysteresis in each of these parameters (i.e., the wetting and drying history of the medium; en-
trapped air; overburden pressure; water-contact angle, and so on). Essentially, the value of D
for a drying medium is likely different than that for the same medium upon wetting.

The introduction of D(6) allows us more readily to solve unsaturated flow problems be-
cause the flow equations are of a form similar to the diffusion equation, for which analytical
solutions are available. Also, we can readily substitute equation 8.16 in the solute transport
equation (see chapter 10). By introducing D into the differential flow equation (again, see
chapter 10) and assuming only horizontal flow, we have

o ﬁiﬁ (8.17)

Jat 0x

Three general approaches are available for solving for D. The first assumes that D is a unique
function of 6; in this case equation 8.17 remains in its current form. A second approach as-
sumes steady flow (i.e., (86/dt) = 0), in which case equation 8.17 is rewritten as
D 36
i 0x
0= e 8.18
e (8.18)

The third approach assumes that D is constant, and rewrites equation 8.17 as

36 96

Equation 8.19 is the best-known form of the diffusion equation, and is similar to the equation
for heat flow or electron flow.

The most convenient way to measure D is in the laboratory, for which there are two
commonly preferred methods. These include the pressure-plate outflow method (Gardner
1956), and the horizontal infiltration method (Bruce and Klute 1956), which uses the Boltz-
mann transformation and is discussed in the following section. In this section, we focus our
discussion on the pressure-plate outflow method.

By placing a sample of a given soil in a pressure-plate apparatus, we subject it to a spe-
cific gas-phase pressure, for which the volume of water released from the sample may be
recorded for each increment in pressure increase as a function of time. The pressure-plate ap-
paratus typically is attached to a burette (used for outflow collection), and at time zero there
is an initial gage pressure, P,, for which the pressure in the apparatus and the water in the
medium sample is in hydraulic equilibrium. Also at time zero, we apply a specific pressure
AP, such that the final pressure in the apparatus, Py, can be represented as P = P, + AP.The
outflow volume collected in the burette is measured as a function of time. The smaller the
pressure increments, AP, the more accurate the measurement of D and/or K. Remembering
that H = ,, + z, then,

2
H=—ut7 (8.20)
< Pr8
where p, is the fluid density (kg m™) and g is the gravitational constant. Since P/ prg >> z,
z s safely neglected which results in the following non-linear differential equation:

d 1 9 oP
ad s il ——[K(H) —} (8.21)
ot prg 9z 9z

Equation 8.21 is difficult to solve analytically, but if we linearize it, it is readily solved. We do
this by assuming that the pressure increment, AP, is very small, yet large enough to obtain a
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measurable volume of outflow. In so doing, K is constant during outflow and is moved to the
outside of the differential operator. Additionally, by using this same process we assume that
the water content and pressure have a linear relation during outflow, and that both fluid den-
sity and the gravitational factors are constant also. This allows us to write (skipping several
steps in the math):

_%> = @ = D(e)
do ps8b

where b represents the reciprocal of —dy,, /d6, assumed constant. Assuming D is constant
during each pressure increment, we calculate D from the quantity of water released from a
sample. Skipping about 25 mathematical steps, we can plot In[Q, — Q(f)] as a function of
time. In this plot, O, represents the total amount of water released from the sample over a
pressure increment AP, and Q(?) is the quantity of outflow from the sample at time, ¢. Total
outflow, Q,, is expressed as Q, = bV AP, where V is the volume of the sample. Thus, in order
to find D from the quantity of water collected from a sample, we use

m@f—mm=P%%%ﬂ—&%fm (8.23)

m@( (8.22)

where L is length of soil sample. The plot of In[Q, — O(¢)] versus time should yield a straight
line with an intercept In(8Q, /m?); S is slope of this line per unit time (see figure 8.7), given by

77_2

8= = ZL_ZD (8.24)
which we rewrite to obtain
417
D=8 (7) (8.25)

Figure 8.7 Plot of In[Q, — O(¢)]
versus time, ¢, to find D; where
In[Q, - Q(1)] = [In (8Q,/%)] -
(/2 L)*Dt (after Gardner 1956)

In [Qy — O(N]

Time () ———————>
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For our theory, the plot is a straight line; however, experimental data often results in “tailing,”
as with a break-through curve (see chapter 10). Such behavior shows that the slope S and
consequently, D(6), is not constant over the range of pressure change AP; it does not mean
that D or K is no longer a function of theta, since they depend on the total quantity of water
outflow, O, from the sample. Thus, the expression for capillary conductivity is written as

pngo4SL2

L (8.26)

where V is the volume of the sample. This is equation 16 of Gardner (1956), and allows us to
solve for both K and D simultaneously from the same set of data, where the initially sought
diffusivity D is given by equation 8.25. The constant, b, used in equation 8.24 is determined
from the relation b = (Q,/VAP).

It is of interest to note that this method was originally developed by Terzaghi (1943) to
determine the diffusivity of soil samples during consolidation. Water is derived by compres-
sion of the sample due to the imposition of an incremental load, and the samples are satu-
rated, but the theory and approach are the same.

8.5 BOLTZMANN’S TRANSFORMATION

The horizontal diffusivity equation is written as

However, equation 8.27 is a non-linear partial differential equation and cannot be solved by
the usual methods. Assuming that 6 is a single-valued function of a variable B (also a function
of both time and distance), equation 8.27 is transformed to an ordinary differential equation
through the use of Boltzmann’s transformation (Boltzmann 1894; Crank 1956). The Boltz-
mann transformation is expressed as

B= % (8.28)
where x is distance (L) and ¢ is time (7"). The boundary conditions are
0=0, for B=ow (B— ) (8.29)
and
0.=0, for B=0 (8.30)

These boundary conditions actually create a third condition because § must be both contin-

uous and differentiable (vary smoothly) with x, ¢, and also B, thus
dae
e — — : . 1
1B 0, for 6=, (8.31)

These relations are seen in figure 8.8 using reduced measurements after Nielsen and Biggar
(1962). By manipulating the above equations we obtain the differential equation of the curve
in figure 8.8, and integrate it to find that

1 O
D) = [-————\| Bde (8.32)

%) (ﬁ) 6;
dB o
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where 6, is the volumetric water content at distance x, B can be obtained from equation 8.28,
and 6, is the initial volumetric-water content (preferably air-dry). One method to obtain
D(6,) is to use a computer program. However, if you do not have such a program, the basics
steps in obtaining D(6,) is to: (1) Plot 6 versus x as in figure 8.8; (2) From this plot, evaluate
(d6/dB),, and the integral of equation 8.32 at various values of 6,. The value of the deriva-
tive (d6/dB) is found by drawing tangents at various points along the curve (“eyeball it”)
and finding the slope, or semianalytically from the raw data. To evaluate the integral, simply
divide the area under the curve of 6 versus x into a finite number of different strips and find
the approximate cumulative sum (area) of these strips; and (3) Determine D at the value of
6, used in step 2 to obtain D(6).

Since D(6,) only appears on the left side of equation 8.32, it is important to remember
its relation to 6,. Because 6, is the lower limit in the integral, we have to integrate completely
to the end of the tail in figure 8.8, that is, where the curve joins the x axis or the value of B as
given in equation 8.28. As a result of this, the horizontal tube must be long enough so that the
diffusing fluid front does not reach the end of the tube.

From the discussion above and the original experiment of Bruce and Klute (1956, 1962),
we perceive that the Boltzmann transformation is valid for fluid movement in unsaturated
soils for cases in which equation 8.27 is valid and where the following boundary conditions
exist: 0(x,r) = 6, for x >0, t =0 and also 6(x,f) = 6, for x = 0,7 > 0. Additionally, since
0 = f(B), then equation 8.28 is expressed as

X

B(9) = — 8.33
0= (8:33)
Time (min) Figure 8.8 Plot of § versus distance,
0 300 600 900 1200 1500 1800 x, to assist in obtaining diffusivity,
0.5 I I T T T I T T T T D(#6,), as described in equation 8.32
(data from Nielsen and Biggar 1962)
0.4 7
0.3
0.2
0.1
ojn t = 1500 min
6; =0.02
0 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Distance (cm)
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Simply, this implies that the quantity B as a function of 6 is equal to the product on the right-
hand side of equation 8.33. It should be noted that B(#) versus 6 will be different for differ-
ent soils. Consequently, for positions along the horizontal column that have the same value
of 6, then, despite distance x and time ¢, the product on the right-hand side of equation 8.33
is constant. If it is determined that 6 at the wetting-front is constant, then we can plot distance
of the front versus V7 at the front. The result should be a straight-line relation. However, if a
straight line is not obtained, it usually indicates that the researcher failed to measure the por-
tion of the wetting front that is at constant 6, not that the diffusion theory is invalid for the
medium.

QUESTION 8.2

Volumetric-moisture content, §, versus distance for a horizontal soil column of a sandy loam soil, for a
time of 1500 minutes after water was applied at the input end (x = 0),is given in table 8.1. Utilize equa-
tion 8.33 to plot the Boltzmann transformation versus @ for this data.

Table 8.1
0 Distance (cm) 0 Distance (cm)

0.02 76.00 0.21 74.45
0.03 75.90 0.22 74.15
0.04 75.85 0.23 73.80
0.05 75.75 0.24 73.40
0.06 75.71 0.25 72.80
0.07 75.67 0.26 72.08
0.08 75.63 0.27 71.20
0.09 75.58 0.28 69.90
0.10 75.50 0.29 68.05
0.11 75.45 0.30 66.05
0.12 75.40 0.31 63.75
0.13 75.35 0.32 61.10
0.14 75.30 0.33 58.15
0:15 75.25 0.34 54.80
0.16 75.18 0.35 51.20
0.17 75.05 0.36 47.10
0.18 74.90 0.37 41.80
0.19 74.75 0.38 32.50
0.20 74.65 0.39 0

Source: Nielsen et al., 1962

In this chapter we discussed the basic principles of water flow within an unsaturated medium;
how, within the unsaturated zone the degree of saturation refers to the portion of pore volume
filled with water, and that the unsaturated hydraulic conductivity decreases rapidly as volu-
metric water content decreases. Also, rather than a positive pressure head (as discussed in sat-
urated fluid flow), flow in the unsaturated zone is primarily by a negative suction or matric
potential. We also discussed the validity of Darcy’s law for use in unsaturated flow.If anon-zero
hydraulic gradient is applied to fluid in an unsaturated medium (no matter how small) and the
water does not move or the velocity, v, is not a straight-line function of the hydraulic gradient,
Darcy’s law will not apply and the fluid is termed non-Newtonian in behavior. However, for
most cases, Darcy’s law is valid for describing water movement through unsaturated porous
media. The extent to which non-Darcy flow exists in a soil is not fully understood.
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We also discussed various physical and other flow factors such as stratified medium, the
dependence of K on 0, and so on, which affect unsaturated hydraulic conductivity, and we
developed the general flow equations for hydraulic conductivity and diffusivity. It was also
discussed how to linearize the flow equation 8.27 for diffusivity by use of the Boltzmann
transformation. This chapter is to serve as a beginning point for understanding the unsatu-
rated flow concepts involving gaseous diffusion, contaminant migration, and moisture redis-

tribution—all of which will be discussed in chapters 9, 10, and 11, respectively.

ANSWERS TO QUESTIONS

8.1. Using 8.12¢c, we obtain (remembering to convert from kPa to m for ¢): K(¢) = (16.72 m/day)/

[1 + (2.044 m/0.55 m)*] = 0.087 m/day.

8.2. Using a spreadsheet program, we obtain Table 8.2, as well as the corresponding plot for the Boltz-
mann transformation.

Table 8.2
Cumulative Slope
Moisture Area area of
content Distance  Boltzmann! at under curve Diffusivity
(cm*/cm®) (cm) (cm/min®’)  Point? curve? at Point*  (cm?min)’

0.02 76.00 1.9263 - = - -

0.03 75.90 1.9597 0.0194 0.0194 0.2991 -0.0325
0.04 75.85 1.9584 0.0196 0.0390 ~7.7460 0.0025
0.05 7515 1.9559 0.0196 0.0586 -3.8730 0.0076
0.06 75.71 1.9548 0.0196 0.0781 -9.6825 0.0040
0.07 75.67 1.9538 0.0195 0.0977 -9.6825 0.0050
0.08 75.63 1.9528 0.0195 0.1172 -9.6825 0.0061
0.09 75.58 1.9515 0.0195 0.1367 —7.7460 0.0088
0.10 75.50 1.9494 0.0195 0.1562 —4.8412 0.0161
0.11 75.45 1.9481 0.0195 0.1757 -7.7460 0.0113
0.12 75.40 1.9468 0.0195 0.1952 -7.7460 0.0126
0.13 75.35 1.9455 0.0195 0.2147 -7.7460 0.0139
0.14 75.30 1.9442 0.0194 0.2341 -7.7460 0.0151
0.15 75.25 1.9429 0.0194 0.2536 —7.7460 0.0164
0.16 75.18 1.9411 0.0194 0.2730 -5.5328 0.0247
0.17 75.05 1.9378 0.0194 0.2924 -2.9792 0.0491
0.18 74.90 1.9339 0.0194 0.3117 -2.5820 0.0604
0.19 74.75 1.9300 0.0193 0.3310 -2.5820 0.0641
0.20 74.65 1.9275 0.0193 0.3503 -3.8730 0.0452
0.21 74.45 1.9223 0.0192 0.3696 -1.9365 0.0954
0.22 74.15 1.9145 0.0192 0.3888 -1.2910 0.1506
0.23 73.80 1.9055 0.0191 0.4079 -1.1066 0.1843
0.24 73.40 1.8952 0.0190 0.4269 -0.9682 0.2204
0.25 72.80 1.8797 0.0189 0.4457 —0.6455 0.3453
0.26 72.08 1.8611 0.0187 0.4645 -0.5379 0.4317
0.27 71.20 1.8384 0.0185 0.4829 -0.4401 0.5487
0.28 69.90 1.8048 0.0182 0.5012 -0.2979 0.8411
0.29 68.05 1.7570 0.0178 0.5190 -0.2094 1.2395
0.30 66.05 1.7054 0.0173 0.5363 —-0.1936 1.3847
0.31 63.75 1.6460 0.0168 0.5530 -0.1684 1.6421
0.32 61.10 1.5776 0.0161 0.5692 -0.1462 1.9472
0.33 58.15 1.5014 0.0154 0.5846 -0.1313 2.2262
0.34 54.80 1.4149 0.0146 0.5991 —-0.1156 2.5912
0.35 51.20 1.3220 0.0137 0.6128 -0.1076 2.8481
0.36 47.10 1.2161 0.0127 0.6255 -0.0945 3.3109

(contd.)
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Table 8.2 (continued)
Cumulative®*  Slope*
Moisture Area? area of
content Distance  Boltzmann! at under curve Diffusivity’®
(cm3/cm®) (cm) cm/min®’ Point curve at Point cm?/min
0.37 41.80 1.0793 0.0115 0.6370 -0.0731 4.3585
0.38 32.50 0.8391 0.0096 0.6466 -0.0416 7.7630
0.39 0.00 0.0000 0.0042 0.6508 -0.0119 27.3049
!Distance + V%, where t = 1500 min
20.01 ((1.9263 + 1.9597)/2)
3Cumulative sum
“Current § — Prev. §/Boltzmann, that is, (0.03 — 0.02)/(1.9597 — 1.9263)
5(1/slope)*(—0.5)*Cumulative Area; here = 0.0194
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ADDITIONAL QUESTIONS

8.3. You are given two soils, a loam and a sand. At the same 6, the loam has a lower hydraulic conduc-

tivity than the sand. Explain this.

8.4. Why can a soil have different K values for a specific 4,,?
8.5. Suppose dH/Jz is negative, positive, and zero. What is the direction of flow for each case?

8.6. You have a soil with the condition # < 0 at the surface. Would you expect a water layer to be pre-

sent on the surface?

8.7. We can express D = K/ (d6/dP,,) = K (dP,/df), where P, is the pressure equivalent of the ma-
tric potential. With this in mind, is D a function of the volume fraction of water?



