Unsaturated Zone Hydrology for Scientists and Engineers

James A. Tindall, Ph.D.
United States Geological Survey, National Research Program,
Unsaturated Zone Field Studies;
Department of Environmental Science, University of Colorado at Denver

James R. Kunkel, Ph.D., P.E.
Knight Piésold, LLC, Denver, Colorado;
Department of Geology and Geological Engineering, Colorado School of Mines

with

Dean E. Anderson, Ph.D.
United States Geological Survey, National Research Program,
Unsaturated Zone Field Studies

PRENTICE HALL
Upper Saddle River, New Jersey 07458
Contents

Preface xiii

1 INTRODUCTION AND BRIEF HISTORY 1
 Introduction 1
 1.1 A Brief History of Unsaturated Zone Hydrology 2

2 PHYSICAL PROPERTIES AND CHARACTERISTICS OF SOILS 7
 Introduction 7
 2.1 Mineralogical Composition 7
 Clays 8
 Silicate Clays 9
 Amorphous Clays 10
 2.2 Soil Profiles 13
 2.3 Soil Texture 15
 2.4 Soil Classes 18
 2.5 Particle Size Analysis 19
 2.6 Soil as a Phase System 24
 2.7 Density and Volume–Mass–Weight Relations 24
 Particle Density 24
 Void Ratio 26
 Porosity 26
 Bulk Density 30
 Water Content 30
 Air-Filled Porosity 32
 2.8 Specific Surface Area 33
 Summary 36
3 BEHAVIOR OF CLAY–WATER SYSTEMS 39

Introduction 39

3.1 Electrochemical Properties of Clay–Water Systems 40

Units 40
Coulomb’s Law 41
Heat of Wetting 42
Interaction between Uncharged Soil Particles and Water 43

3.2 Electrochemical Phenomena of Clays 46

Surface Charge of Clay Minerals 46
Diffuse Electrical Double Layer Theory 47

3.3 Electrokinetic Phenomena 50

Electrophoresis 50
Electroosmosis 51
Streaming Potential 54

3.4 The DLVO Theory of Colloid Stability 54

Interactive Repulsive Forces between Platelets 55
Potential Energy Due to Constant Potential versus Constant Charge 56
Van der Waals–London Forces 58
Potential Energy Due to van der Waals–London Forces 59
Total Potential Energy 60
Non-DLVO Forces 62
Limitations of the DLVO Theory 62

3.5 Ion Exchange 63

Cation Exchange Capacity 63
Sodium Adsorption Ratio 64

3.6 Hydration and Shrinking of Clays 65

Hydration 65
Shrinking 70

3.7 Flocculation and Dispersion of Clays 70

Flocculation 70
Dispersion 72

3.8 Humus in Soil 73

Humic and Fulvic Acids 73
Sorption of Contaminants 76

3.9 Aggregation 79

3.10 Aggregate Formation and Characterization 81

Biological 81
Chemical 82
Physical 83

3.11 Soil Crusting 84

3.12 Soil Cracking 88

Summary 90
4 POTENTIAL AND THERMODYNAMICS OF SOIL WATER 95

 Introduction 95
4.1 The Structure of Water 95
4.2 Air–Water Interface: Contact Angle 97
4.3 Capillarity 98
4.4 Capillary Potential 102
4.5 Components of Soil Water Potential 103
 Gravitational Potential (ψ_g) 104
 Osmotic Potential (ψ_o) 105
 Vapor Potential (ψ_v) 107
 Matric Potential (ψ_m) 109
 Hydrostatic Pressure Potential (ψ_h) 110
 Overburden Pressure Potential (ψ_h) 110
 Intergranular Pressure (σ_g) 111
4.6 Chemical Potential of Soil Water 113
4.7 Hysteresis 117
 Ink Bottle Effect 118
 Contact Angle 120
 Entrapped Air 120
 Shrinking and Swelling 120
 Summary 121

5 CHEMICAL PROPERTIES AND PRINCIPLES OF SOIL WATER 126

 Introduction 126
5.1 Organic Compounds and Constituents 126
 Transport of Organic Constituents in the Unsaturated Zone 127
 Coupled Processes 128
5.2 Mass Action and Governing Equations 129
5.3 Activity Coefficients 131
 Standard Methods 131
 Infinite-Dilution Activity Coefficients 133
5.4 Equilibrium and Free Energy 134
5.5 Electroneutrality 136
5.6 Acid Dissociation 137
5.7 Hydrolysis 139
5.8 Ion Complexes and Dissolved Species 140
5.9 Diffusion 142
5.10 Solubility 143
5.11 Chemical Saturation 145
5.12 Oxidation and Redox Reactions 145
5.13 Microbial Mediation and pH 147
 Summary 148
6 PRINCIPLES OF WATER FLOW IN SOIL 152
 Introduction 152
6.1 Bernoulli's Equation 153
6.2 Torricelli's Law 155
6.3 Poiseuille's Law 158
6.4 Flow Characteristics: Laminar and Turbulent Flow 159
 Summary 161

7 SATURATED WATER FLOW IN SOIL 165
 Introduction 165
7.1 Darcy's Law 165
7.2 Hydraulic Conductivity and Permeability 166
7.3 Hydraulic Conductivity Values of Representative Soils 168
7.4 Factors Affecting Permeability and Hydraulic Conductivity 169
7.5 Limits of Darcy's Law 170
7.6 Darcy's Law and Water Flow through Soil Columns 171
7.7 Homogeneity, Heterogeneity, Isotropy, and Anisotropy of Soils 172
7.8 Saturated Flow in Layered Media 173
7.9 Laplace's Equation 175
7.10 Diffusion Equation 178
 Summary 179

8 UNSATURATED WATER FLOW IN SOIL 183
 Introduction 183
8.1 Validity of Darcy's Law for Unsaturated Conditions 185
8.2 Factors Affecting Unsaturated Hydraulic Conductivity 185
8.3 Development of Unsaturated Flow Equations 189
8.4 Hydraulic Diffusivity 192
8.5 Boltzmann's Transformation 195
 Summary 197

9 TRANSPORT OF HEAT AND GAS IN SOIL AND AT THE SURFACE 200
 Introduction 200
9.1 Basic Concepts and Definitions 201
 Energy Transfer and Heat Content 201
 Evaporation and Condensation 202
 Quantifying Water Content in Air 204
9.2 Energy Exchanges at the Surface 210
Radiation Balance 212
Energy Balance 215

9.3 Soil-Heat Transfer 221
Heat Capacity, Conductivity, and Diffusivity 221
Soil-Heat Flux 223
Temperature Distribution in Soil 226

9.4 Soil Moisture Evaporation and the Stages of Soil Drying 230

9.5 Evapotranspiration and the Influence of Vegetation on Soil Moisture 234
Plant Physiology 234
Model Estimates of Evapotranspiration 238

9.6 Measuring Energy Budget Terms 240

9.7 Soil-gas Transport 245
General Properties of Gases 245
Porosity and Permeability 246
Physical Mechanisms Responsible for Soil-gas Transport 247
Mathematical Description of Gas Transport 250

9.8 Coupled Transport of Heat, Water, and Water Vapor 258

9.9 Multiphase Transport of Volatile Compounds in Soil 260

9.10 Composition of Soil-air 262

9.11 Measuring Soil-Gas Flux 267
Soil-atmosphere Exchanges 267
Gas Flux within Soil 269
Summary 269

10 CONTAMINANT TRANSPORT 273

Introduction 273

10.1 Physical Processes and Movement of Solutes 273

10.2 Types of Fluid Flow 275

10.3 Breakthrough Curves, Piston Flow, and Hydrodynamic Dispersion 276
Piston Flow 277
Hydrodynamic Dispersion 277
Mechanical Dispersion 278
Molecular Diffusion 279
Relation of a Breakthrough Curve to the Solution of the ADE 280
A General Solution for the Dispersion of a Displacing Solute Front 280
Determining the Error Function 282
Calculating the Displacing Front of a Breakthrough Curve 283
Calculating the Concentration in a Moving Slug of Fluid for a Breakthrough Curve 284
Calculation of the Dispersion Coefficient (D) 285

10.4 Nonreactive Solutes 288

10.5 Sorption Reactions 289

10.6 Equilibrium Chromatography 292
10.7 Mathematical Modeling of Transport Phenomena in Soils 294
10.8 Further Solutions to the ADE: Initial and Boundary Conditions 295
10.9 Numerical Solutions of Equilibrium Exchange 299
10.10 Nonequilibrium Conditions 301
10.11 Combined Effects of Ion Exchange and Dispersion 305
10.12 Mobile and Immobile Regions in Soils 305
 Aggregated Soils 306
 Fractured Media 309
 Layered Media 310
10.13 Preferential Flow Paths, Macropores, and Fingering 312
 Modeling Chemical Transport Under Conditions of Preferential Flow 315
 Problems Encountered in Modeling Preferential Flow 316
10.14 Colloidal-Facilitated Transport 318
 Colloid Migration 318
 A Conceptual Model for Colloid Transport 322
10.15 Sources of Contamination 325
 Municipal Sewage Sludge Disposal and Wastewater Irrigation 325
 Radioactive Waste Disposal 328
 Landfills 331
 Other Sources of Contamination 331
10.16 Case Study: Radionuclide Distribution and Migration
 Mechanisms at Maxey Flats 332
Summary 338

11 EFFECTS OF INFILTRATION AND DRAINAGE ON SOIL-WATER REDISTRIBUTION 346

 Introduction 346
11.1 Profile-Moisture Distribution 347
 Soil Characteristics 349
 Liquid Properties 350
 Rainfall or Other Liquid-Arrival Factors 350
 Other Soil-Surface Factors 352
11.2 Infiltration Theories 352
 Green-Ampt Approach 353
 Horton and Kostiakov Equations 356
 Holan Model 358
 Philip Model 360
 Morel-Seytoux and Khanji Model 361
 Smith–Parlange Model 361
 Comparison of the Various Physically Based Infiltration Models 362
11.3 Effects of Macroporosity 362
11.4 Layered Soils 363
11.5 Crusted Soils 365
11.6 Runoff 367
11.7 Redistribution and Internal Drainage 369
 Water Redistribution 369
 Internal Drainage 370

11.8 Field Measurements 371
 Areal Measurements or Data Analysis 372
 Point Measurements 373
 Summary 375

12 FIELD WATER IN SOILS 379

 Introduction 379

12.1 Field Water Balance 379
 Precipitation, Air Temperature, and Solar Radiation 380
 Runoff 383
 Evaporation/Transpiration 389
 Change in Surface Storage 399
 Change in Soil-Moisture Storage 399

12.2 Field Radiation and Energy Balance 401
 Radiation Balance 401
 Energy Balance 402

12.3 Water- and Energy Balance Methodology 403
 Summary 404

13 APPLIED SOIL PHYSICS: MODELING WATER, SOLUTE, AND VAPOR MOVEMENT 407

 Introduction: Modeling Approaches 407
 Analytical Models 407
 Numerical Models 408

13.1 One-Dimensional Deterministic Liquid-Flow Models 409
 Analytical Models 409
 Numerical Models 427

13.2 Three-Dimensional Deterministic Liquid- and Vapor-Flow Models 429
 Analytical Models 429

13.3 Three-Dimensional Deterministic Immiscible Liquid-Flow Model 448
 Analytical Model 448
 Numerical Models 459

13.4 Use of Tracers in Unsaturated Soil Studies 460
 Theory of Unsaturated Liquid Movement Using Tracers 460
 Environmental Tracers 462
 Applied Tracers 464
 Tracer Flux Through the Root Zone 465
13.5 Stochastic and Transfer Function Models 470
 Analytical Model 470
 Numerical Models 474
 Summary 474

14 DRAINAGE IN SOIL WATER AND GROUND WATER 476
 Introduction 476
 14.1 Problems Associated with Drainage 476
 14.2 Typical Drainage Situations Under Field Conditions 478
 Flow in an Unconfined Aquifer 478
 Flow toward a Well 479
 Flow between Parallel Ditches 480
 Flow with Uniform Recharge 481
 Evaluation of Falling Water Tables 482
 14.3 Ground Water Drainage 483
 Water Tables and the Capillary Fringe 483
 Equipotential Lines, Streamlines, and Potential Flow 484
 Construction of Flow Nets 485
 14.4 Drainage Design 488
 Elements of Drainage Design 488
 Development of Drainage-Design Criteria 488
 Drainage Coefficients 489
 Theoretical Analysis 489
 14.5 Case Study: The Florida Everglades 491
 Summary 493

15 SOIL REMEDIATION TECHNIQUES 494
 Introduction 494
 15.1 Soil Corrective-Action Criteria 494
 Background 494
 General Principles of Application 495
 Fate and Transport Models for Evaluating Migration to Ground Water 496
 15.2 Alternative Technologies for Soil Remediation 510
 No Action 510
 Capping 511
 Soil Venting 513
 Air Sparging 515
 Soil Flushing 517
 Biological Treatment 518
 Soil Excavation 518
 Soil Washing 519
 On-Site Thermal Treatment 520
 In-Situ Vitrification 521
 Summary 521
16 SPATIAL VARIABILITY, SCALING, AND FRACTALS 524

Introduction 524

16.1 Frequency Distributions of Soils 524
 Geostatistics 529
 Semivariogram 530
 Kriging 530
 Power-law Distributions 531

16.2 Scaling as a Tool for Data Analysis of Physical Properties 534

16.3 The Fractal Dimension 539
 Triadic Von Koch Curves 540
 Self-Similarity and Scaling 540
 Box Dimension 541

16.4 Fractal Construction 543
 Fractal Dimension $0 < D < 1$ 543
 Fractal Dimension $1 < D < 2$ 543
 Fractal Dimension $2 < D < 3$ 545

16.5 Self Similar Fractals: Estimating the Fractal Dimension 545
 Grid Dimension 546
 Point Dimension 546
 Ruler (Divider) Dimension 547
 Perimeter–Area Dimension 547

16.6 Self-Affine Fractals 548
 Hurst's Empirical Law (Exponent H) 548
 Brownian Motion and Random Walks in One Dimension 549
 Scaling Properties of Random Walks in One Dimension 550
 Fractional Brownian Motion: Mathematical Models 551
 Global Dimension of Self-Affine Fractals 551
 Measurement of Self-Affine Fractals 552

16.7 Viscous Fingerling and Diffusion-Limited Aggregation 554
 Diffusion-Limited Aggregation (DLA) 555
 Fractal Diffusion Fronts 556
 Viscous Fingerling in Soil 556

Summary 559

Appendix 1 SITE CHARACTERIZATION AND MONITORING DEVICES 561

Introduction 561

Site Characterization 561

Monitoring Devices 563
 Factors Influencing Choice of Devices 563
 Water Content Measuring Devices 565
 Matric Potential Measuring Devices 567
 Soil Solution Sampling Devices 569
 Pressure Measurement Devices: Differential Pressure Transducers 570
Appendix 2 MATHEMATICS REVIEW 571

Introduction 571
Algebra 571
Some Basic Definitions 572
Trigonometric Relations 574
 Trigonometric Functions 574
 Law of Cosines 575
 Law of Sines 575
Geometric Relations 575
Powers and Roots 576
Logarithms 577
Calculus 577
 Differential and Integral Calculus 577
 Vector Calculus 580
 Differential Equations 581
Vectors 582
The Taste Function 583

Appendix 3 TABLES 586

Complementary Error Function (erfc) 586
Series Expansions 586
 Exponential Integral 586
 Error Function 587
Conversion Factors 587
 Physical Constants 590
 Useful Conversion Factors 590
 Statistics on Water 591
 Converting X number of ppm, to density (g m⁻³) units 591
 Converting water in chemical potential units [J kg⁻¹] to pressure potential units [Pa] 591
 Converting X number of pCi (pico Curies) of a radioactive gas to its concentration in parts per million (ppm, units 591
The International System of Units (SI) 592
 SI Units for Use in Unsaturated Zone Hydrology 595
 Units for Water Flow Applied to Darcy’s Law 595
List of Symbols 596

References 606

Index 621
Preface

Unsaturated zone hydrology has become a vital part of the environmental sciences and of engineering, especially in relation to the characterization, modeling, cleanup, and monitoring of residual solid and liquid storage and disposal. Current and future trends in the environmental sciences and engineering (including multidisciplinary investigations, increasing technological capabilities, more restrictive regulations, and increased hazards to the environment imposed by a growing population), and the viability of employment as scientists, technicians, consultants, environmental engineers, regulators, and so on, in the area of unsaturated zone hydrology, requires a more thorough working knowledge for this field of science. Some universities teach related material in courses on soil physics and agricultural engineering. These courses, however, often do not encompass many environmental fields, and do not always include chemical properties of soils, modeling, monitoring, and contaminant transport. All of these topics, as well as the traditional soil physics topics, are extremely important in the environmental sciences, engineering consulting, and regulatory oversight.

During the past seven years, at both the University of Colorado and Colorado School of Mines, we have taught many students from a wide variety of backgrounds and skill levels in our unsaturated zone hydrology classes. Typical prerequisite classes have not prepared them well for investigating phenomena in the unsaturated zone. Because a knowledge of the unsaturated zone is multidisciplinary, we have been urged by our students to write a book of this nature—beginning with basic physical properties and the behavior of clays, and continuing to include contaminant transport and other parameters such as spatial variability, scaling, and fractals in the earth sciences.

This text was written in response to our students' concerns. It is designed for upper-level undergraduate and beginning graduate students in the fields of environmental science, geology, hydrology, engineering, soil science, soil mechanics, soil physics, and agricultural engineering. While it is possible to cover most of this text in a single semester, some sections are quite lengthy—and perhaps more detailed than necessary. Instructor discretion is required in shaping a meaningful unsaturated zone course, to meet specific objectives. However, the more lengthy and advanced sections can be used as a reference. We have used this book in both basic unsaturated zone hydrology courses at a more applied level, and advanced courses. The primary objective of the basic course is to teach the major processes that occur in the unsaturated zone, and to prepare students to design and install instruments (such as thermocouples, lysimeters, dataloggers, and so on) in order to collect and analyze data under unsaturated zone conditions. In addition to developing greater expertise in devising an unsaturated zone study, the advanced course focuses on modeling the collective data on a
computer and making predictions, through monitoring and other risk-assessment techniques, concerning times of transport of a contaminant to ground water and potential hazards to the environment. For either course, the student should have a good mathematics background (including at least two semesters of calculus and, preferably, partial differential equations). In addition to mathematics, a study of the unsaturated zone requires an understanding of many disciplines; thus, it is helpful if the student has studied geology/hydrology/hydrogeology, ground water, soil science, physics, and chemistry at the college freshman or sophomore level.

Chapter 1 defines the unsaturated (vadose) zone, describes current environmental problems in this area, and gives a brief history of unsaturated zone hydrology. Chapter 2 introduces physical properties of soils, and chapter 3 concentrates on the behavior of clay-water systems.

Chapters 4 and 5 define the energy, thermodynamic, and chemical states and properties of soil-water systems. These chapters define the structure of water, the theory of potential as applied to the soil-water system, hysteresis, and organic and inorganic reactions in the soil-water system.

Chapters 6 through 8 present the principles of water flow in soil, water flow in saturated soils, and water flow in unsaturated soils, respectively, from a theoretical perspective. Chapter 9 (written by Dean Anderson) presents the theory of gaseous transport in soil systems.

Chapters 10 through 15 use the definitions, concepts, and theories from the previous nine chapters to investigate applied modeling of fluid movement and contaminant transport. Modeling concentrates on analytical solutions that are seldom presented in advanced texts, because we believe that analytical solutions are generally more available to the prospective student, and also more easily understood. However, a list of numerical unsaturated zone models is presented, along with references related to each. Chapter 16 is a unique exploration of fractals in soil physical properties, and presents a detailed discussion of soil spatial variability and water movement using fractals.

The text has been written primarily with the student in mind. Throughout the chapters, questions are given at the end of sections when we felt they were needed. These questions are answered completely at the end of each chapter. We did this for two reasons: completing work at the end of each section reinforces the material learned; and seeing the answer to the question increases the students' confidence in their ability to perform the work. Some instructors may feel that we are pampering the students with the complete answer, however; to offset this, and for the instructors' benefit, additional questions are asked at the end of each chapter. Answers to these questions will be found only in an instructor's solutions manual available from the publisher. In certain chapters, sufficient worked examples are given so that the student should not need direct questions with their respective answers.

There are many references that could have been used for the various principles presented in the text. We have made no attempt to indicate the first or primary author of a particular subject, nor to give the subject a complete citation. In some instances, where there has been little significant change in a specific area, we have chosen original references that date back many years; but we have also chosen those references that we believe will be of most value to the student, will represent the most important point of view, or will be most accessible.

ACKNOWLEDGMENTS

We would like to acknowledge Dean E. Anderson of the U.S. Geological Survey, National Research Program, Unsaturated Zone Field Studies, for contributing chapter 9 on gaseous diffusion in soils, and William Beeman for his assistance with the math review in appendix 2.
We also would like to acknowledge the many reviewers who provided helpful comments, which have significantly contributed to the improvement of individual chapters or the entire text: Stephen Anderson, Dennis Baldocchi, Myron Brooks, Brett Bruce, Hsii-Hsiung Chen, Shih-Chao Chiang, Sally M. Cuffin, Katie Walton-Day, John Dowd, David Eckhardt, Richard Healy, Jerry F. Kenny, Ed Kwicklis, Kenneth Lull, Peter B. McMahon, R. D. Miller, Sheldon Nelson, David Nielsen, John Nimmo, Edmund Perfect, David Radcliffe, P. Rengasamy, Gary Severson, Dave Stannard, Timothy D. Steele, Ken Stollenwerk, David Stonestrom, Scott Tyler, and Jack Weeks.

We would also like to thank the following graduate students for their helpful comments: Tim Axley, Andy Beck, Shannon Boots, Rod Carroll, Peter Cutrone, Rob Fishburn, Holly Hodson, Karen Maestas, Dave Mau, Dave Mennick, Joette Miller, Richard Smajter, and Judy Williams.

Special thanks goes to Edwin P. Weeks, Project Chief, Unsaturated Zone Theory and Field Studies, U.S. Geological Survey, National Research Program. Ed's forty years of experience in this field of science include theory, teaching, and research. He reviewed each chapter and provided invaluable advice, numerous comments, and suggestions that often injected reality into some otherwise rather obtuse concepts. The authors owe a great debt to Ed for the exceptional thoroughness of his reviews, and for the time spent on behalf of this text, working to enhance both presentation and clarity for the student of unsaturated zone science. We would also like to acknowledge and thank John Flager, Regional Reports Specialist, U.S. Geological Survey, Water Resources Division, for both his editorial and technical reviews. Also, a special thanks to John M. Evans; Presentation Graphics Chief, Technical Publications Unit, U.S. Geological Survey, Water Resources Division, for designing the cover of the text and assisting, along with Shannon Boots, with the graphics contained within.

We sincerely hope that this text makes a practical contribution to the teaching of unsaturated zone hydrology, and fills an important gap in the hydrologic curriculum at the university level. We especially hope that, as a reference, it can be used by practicing environmental scientists and engineers in solving real-world problems. A companion text that covers the saturated zone, *Groundwater*, by R. Alan Freeze and John A. Cherry, is also available from Prentice Hall.

James A. Tindall
James R. Kunkel
Denver, Colorado