National Research Program | Shingobee Headwaters Aquatic Ecosystems Project (SHAEP)


Current interdisciplinary research is focused on three main topics:

  • Processes associated with the carbon budgets of the two lakes
  • Physical, chemical and biological processes in the Little Shingobee Fen
  • Physical, chemical and biological processes along the Shingobee River
  • Meteorological instrumentation tower.
  • Scientist installing groundwater recharge monitoring instrumentation.
  • Housing for groundwater recharge monitoring instruments.
  • Housing for groundwater recharge monitoring instruments.

Current Research Projects (including some low-hanging research fruit)

+Refinement of hydrologic budget for Shingobee Lake (Rosenberry, Hudson)

The "Great Wall of Shingobee" at the outlet to Shingobee Lake was working well to restrict and accelerate very slow flow at the outlet to allow us to make accurate measurements of stream discharge from Shingobee Lake. In spite of Dallas’s Herculean efforts to keep beaver dams at bay, the ever persistent critters built large dams well downstream, out of Dallas’s reach. Flow at the outlet slowed to the point where accurate discharge measurements were no longer possible. An extension of the great wall did the trick and we are back in business.
Great Wall of Shingobee, where discharge measurements are made. Dallas Hudson working on the expansion of the Great Wall of Shingobee.

+Temporal and spatial variability in discharge of springs (Rosenberry, Hudson)

Ground-water discharge to Shingobee Lake via numerous near-shore springs continues to vary over time in ways that are not always related to weather or lake stage. We are in the process of collecting water-quality samples from several of the springs in an effort to determine ages and flow paths for ground water discharging from the springs. A MODFLOW groundwater-flow model is in need of further refinement should someone be interested in joining this effort.
Spring feeding Shingobee lake. Scientist sampling water at one of the lake's springs. Water quality instrumentation at a spring.

+Source of carbon to Shingobee Lake (Striegl et al.) Gas-flux research (Dornblaser et al.)

Rob Striegl and Mark Dornblaser continue to home in on quantifying several of the carbon fluxes associated with Williams and Shingobee lakes. Manual and/or synoptic-scale measurements are needed to support data provided by gas-flux sensors installed on rafts deployed in Williams and Shingobee Lakes.
Raft with gas-flux sampling instruments. Side view of raft with gas-flux sampling instruments.

+Lake sediment chemistry (Schuster et al.)

Paul Schuster and colleagues published a paper in 2003 in Hydrological Processes in which they characterized and contrasted the chemical characteristics of the shallow, near-shore sediments of Williams Lake in an area where ground water discharges to the lake, and another area where lake water flows to the ground-water system. That was then; this is well over a decade later. It would be very interesting to repeat this study to see what processes continue and what has changed with increasing open-water periods and evolving ecosystems.

+Paleolimnology (in need of a new lead)

Several papers were published in 2003 related to the paleolimnology of the site. Walter Dean and colleagues discussed the effect of groundwater on accumulation of iron and manganese in the deep-lake sediments (Dean et al., 2003, Ground Water). Sheryl Filby and company modeled the hydrology of the site during the mid-Holocene (Filby et al., 2003, Quaternary Research). Antje Schwalb reported on lacustrine ostracodes related to climate dynamics during the Holocene (Schwalb, 2003, Journal of Paleolimnology). After that, emphasis shifted to Steel Lake, situated between Williams and Shingobee Lakes, where varved sediments presented a fantastic view into the post-glacial past (Nelson et al., 2004, Proceedings of the National Academy of Sciences; Nelson et al., 2007, Microbial Ecology; Nelson et al., 2008, New Phytologist;Tian et al, 2005, The Holocene; Tian et al., 2006, Geophysical Research Letters; Wright et al., 2005, Quaternary Science Reviews). Walt Dean and Lisa Doner then moved the focus to Little Shingobee Lake and adjacent fen, where sediment cores yielded pollen and geochemical evidence that the lake ecosystem was changing profoundly to a changing climate as the prairie-forest boundary transitioned past the site (Dean and Doner, 2012, Journal of Paleolimnology). Their results are directly relevant to what appears to be a rapidly changing climate at the site right now.

+Glacial mapping (Melchior)

Bob Melchior completed his long-awaited USGS report on the glacial history of the Shingobee headwaters area (Melchior, 2014, USGS SIR). Melchior reports that a large glacial lake occupied nearly the entire Shingobee watershed until an ice-cored dam broke, creating a catastrophic flood that eroded the large valley through which the modern-day Shingobee River flows. Bob also discusses the creation of sub-glacial tunnel valleys and eskers just north of Shingobee Lake. The carving out of nearby Leech Lake along with the associated creation of large hills between Leech Lake and Shingobee Lake a “hill-hole pair,” is a new concept advanced by Bob. If this paper isn’t fascinating enough, a road log of the geology of northern Minnesota, including the Shingobee site, extends the glacial picture to well beyond the Shingobee headwaters area (Rosenberry et al., 2011, Geological Society of America Field Guide).

+Survey of vegetation type related to hydrologic setting (Melchior)

Bob Melchior has shifted from geology to botany as he continues his research in the Shingobee headwaters area. Bob is always looking for field help should anyone care to assist with this effort.

+Growth rate of northern pike in Shingobee Lake (Hudson, Carlson)

Imagine catching a 39-inch northern, wrestling it into the boat, recording the tag number, length, girth, weight, and then tossing it back in the water; and then catching another just like it later in the same day. This is an ichthyologists’ dream and this happens on a regular basis at Shingobee Lake. Some of these lunkers have been caught nearly 20 times. Little did we know that Dallas, in part due to these pursuits, is the most interesting man in Minnesota, but the proof is in a feature article in the Sunday Minneapolis Tribune (Tribune link from the NRP web pages here). Dallas Hudson keeps this study going in his spare time and Bruce Carlson, retired research scientist from the University of Michigan and current resident of nearby Ten Mile Lake, makes sense of the plethora of data produced by the 10,000 or so tagged northerns. Andy Hafs from Bemidji State and his graduate student, John Kempe, have recently joined the effort.

+Phenology of the Shingobee headwaters area (Hudson)

Dallas Hudson records first sightings, numbers, last sightings, and several other phenological observations for several hundred species of mammals, insects, and flora. We are in need of someone to help make sense of all these valuable data that contain some very interesting trends. Dallas also has been the first observer of several species in Hubbard County, several of which have never been observed so far north.

+Research of lakes, streams and wetlands in a small-watershed setting

Watershed-scale research has been a significant component of hydrologic and ecological disciplines for many decades, and small-watershed studies have been especially common and useful because of their scale. It is much easier to quantify processes, assess heterogeneities and extrapolations of results, and scale those results when studying a watershed that is relatively small. The Upper Shingobee watershed is only 28 square kilometers in area and much of the research is focused on subwatersheds within the Shingobee headwaters area. An overview of research highlights from studies conducted at Williams Lake, Shingobee Lake, the Shingobee River upstream of Shingobee Lake, and the Little Shingobee Fen, was presented at the First Interagency Conference on Research in the Watersheds during Fall 2003 (Rosenberry et al., 2003, Conference proceedings), and serves as a template for continuing ecosystems research opportunities at Shingobee.

+Available data from the Shingobee site

Much data has been collected from the Shingobee site since its inception. Some data are collected only once or infrequently during synoptic studies for special research interests. However some data are collected during regular intervals and include:

  • climate data
  • water-chemistry data from Williams Lake, Shingobee Lake and the Shingobee River
  • hydrology data

While some data have not yet been processed, checked for errors, or analyzed, many of these data are available upon request. Please contact Brian Neff ( with request for climate, water-chemistry or hydrology data.