#Aquesta base de dades ha estat modificada pel projecte SRMET #No hi ha els coeficients de les eq.virials #No hi son tots els elements. #l'Al no esta arreglat SOLUTION_MASTER_SPECIES # #element species alk gfw_formula element_gfw # H H+ -1. H 1.008 H(0) H2 0.0 H H(1) H+ -1. 0.0 E e- 0.0 0.0 0.0 O H2O 0.0 O 16.00 O(0) O2 0.0 O O(-2) H2O 0.0 0.0 Ca Ca+2 0.0 Ca 40.08 Mg Mg+2 0.0 Mg 24.312 Na Na+ 0.0 Na 22.9898 K K+ 0.0 K 39.102 Fe Fe+2 0.0 Fe 55.847 Fe(+2) Fe+2 0.0 Fe Fe(+3) Fe+3 -2.0 Fe Al Al+3 0.0 Al 26.9815 Si H4SiO4 0.0 SiO2 28.0843 Cl Cl- 0.0 Cl 35.453 C CO3-2 2.0 HCO3 12.0111 C(+4) CO3-2 2.0 HCO3 C(-4) CH4 0.0 CH4 Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 S SO4-2 0.0 SO4 32.064 S(6) SO4-2 0.0 SO4 S(-2) HS- 1.0 S Cu Cu+2 0.0 Cu 63.546 Cu(+2) Cu+2 0.0 Cu Cu(+1) Cu+1 0.0 Cu SOLUTION_SPECIES H+ = H+ log_k 0.000 # -gamma 9.0000 0.0000 e- = e- log_k 0.000 H2O = H2O log_k 0.000 Ca+2 = Ca+2 log_k 0.000 # -gamma 5.0000 0.1650 Mg+2 = Mg+2 log_k 0.000 # -gamma 5.5000 0.2000 Na+ = Na+ log_k 0.000 # -gamma 4.0000 0.0750 K+ = K+ log_k 0.000 # -gamma 3.5000 0.0150 Fe+2 = Fe+2 log_k 0.000 # -gamma 6.0000 0.0000 Al+3 = Al+3 log_k 0.000 # -gamma 9.0000 0.0000 H4SiO4 = H4SiO4 log_k 0.000 Cl- = Cl- log_k 0.000 # -gamma 3.5000 0.0150 CO3-2 = CO3-2 log_k 0.000 # -gamma 5.4000 0.0000 SO4-2 = SO4-2 log_k 0.000 # -gamma 5.0000 -0.0400 Cu+2 = Cu+2 log_k 0.000 # -gamma 6.0000 0.0000 # # #aqueous species # # # # H and O # H2O = OH- + H+ log_k -14.000 delta_h 13.340 kcal 2 H2O = O2 + 4 H+ + 4 e- log_k -85.9 delta_h 134.79 kcal #aquesta delta_h no es d'ANDRA 2 H+ + 2 e- = H2 log_k -3.11 delta_h -1.759 kcal #aquesta delta_h no es d'ANDRA # # carbonate # CO3-2 + H+ = HCO3- log_k 10.33 delta_h -14.7 kJ # -gamma 5.4000 0.0000 CO3-2 + 2 H+ = CO2 + H2O log_k 16.68 delta_h -23.860 kJ CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O log_k 41.071 delta_h -61.039 kcal # # chloride # H+ + Cl- = HCl log_k -0.67 delta_H 0.00 kJ # # Sulphur # SO4-2 + H+ = HSO4- log_k 1.98 delta_h 22.44 kJ # HS- = S-2 + H+ # log_k -12.918 # delta_h 12.1 kcal #segons Bdades ANDRA es millor l'altra reaccio SO4-2 + 8H+ + 8e- = S-2 +4 H2O log_k -19.0 #ANDRA_TDB no hi ha DHr SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O log_k 33.65 delta_h -60.140 kcal #no s`ha trobat a ANDRA HS- + H+ = H2S log_k 6.99 delta_h -22.3 kJ 2 H+ + SO4-2 = H2SO4 log_k -1.0 delta_H 0.0 kJ #no hi ha valor a ANDRA SO4-2 + H+ = HSO4- log_k 1.98 delta_H 22.440 kJ # # Calcium # Ca+2 + H2O = CaOH+ + H+ log_k -12.7 delta_h 65.035 kJ Ca+2 + CO3-2 = CaCO3 log_k 3.22 delta_h 14.832 kJ Ca+2 + CO3-2 + H+ = CaHCO3+ log_k 11.43 delta_h -2.565 kJ Ca+2 + SO4-2 = CaSO4 log_k 2.31 delta_h 6.904 kJ Ca+2 + HSO4- = CaHSO4+ log_k 1.08 #no hi es Ca+2 + Cl- = CaCl+ log_k 0.29 delta_h 8.547 kJ Ca+2 + 2 Cl- = CaCl2 log_k -0.6436 delta_h -5.8325 kJ # nohi es . # # Magnesium # Mg+2 + H2O = MgOH+ + H+ log_k -11.440 delta_h 66.672 kJ 4 Mg+2 + 4 H2O = Mg4(OH)4+4 + 4 H+ log_k -40.30 delta_H 0.0 #a Andra no hi ha dHr Mg+2 + CO3-2 = MgCO3 log_k 2.88 delta_h 11.350 kJ Mg+2 + H+ + CO3-2 = MgHCO3+ log_k 11.3 delta_h -11.613 kJ Mg+2 + SO4-2 = MgSO4 log_k 2.36 delta_h 5.858 kJ Mg+2 + Cl- = MgCl+ log_k 0.35 delta_H 5.079 kJ # # Sodium # Na+ + H2O = NaOH + H+ log_k -13.9 delta_h 12.823 kcal #a ANDRA no hi ha DHr Na+ + CO3-2 = NaCO3- log_k 1.270 delta_h 37.279 kJ Na+ + H+ + CO3-2 = NaHCO3 log_k 10.08 delta_h -15 kJ Na+ + SO4-2 = NaSO4- log_k 0.700 delta_h 6.304 kJ 2 H2O + Na+ + Al+3 = NaAlO2 + 4 H+ log_k -23.6266 delta_H 190.326 kJ #aquesta sp no hi es a aNDRA Na+ + Cl- = NaCl log_k 0.04 delta_H -0.110 kJ # # Potassium # K+ + H2O = KOH + H+ log_k -14.5 delta_h 0.0 kcal #a ANDRA no hi ha DHr K+ + SO4-2 = KSO4- log_k 0.850 delta_h 2.596 kJ SO4-2 + K+ + H+ = KHSO4 log_k 0.8136 delta_H 29.8319 kJ #no hi es K+ + Cl- = KCl log_k -1.4946 delta_H 14.1963 kJ # a ANDRA donen log_K =0.0 i DHr=0.07. MOLt estrany, no? # # Iron (II) # Fe+2 + H2O = FeOH+ + H+ log_k -9.500 delta_h 55.304 kJ 2 H2O + Fe+2 = Fe(OH)2 + 2 H+ log_k -20.6 delta_h 119.662 kJ 3 H2O + Fe+2 = Fe(OH)3- + 3 H+ log_k -31.9 delta_h 138.072 kJ 4 H2O + Fe+2 = Fe(OH)4-2 + 4 H+ log_k -46.0 delta_H 158.797 kJ Fe+2 + Cl- = FeCl+ log_k 0.14 delta_h -0.078 kJ 2 Cl- + Fe+2 = FeCl2 log_k -2.4541 delta_H 6.46846 kJ #no hi es a ANDRA 4 Cl- + Fe+2 = FeCl4-2 log_k -1.9 delta_h 0.0 kJ #no hi es a ANDRA Fe+2 + CO3-2 = FeCO3 log_k 5.69 delta_h -5.764 kJ Fe+2 + HCO3- = FeHCO3+ log_k 2.72 delta_h 0.0 kcal #no hi es a ANDRA Fe+2 + SO4-2 = FeSO4 log_k 2.2 delta_h 13.514 kJ Fe+2 + H+ + SO4-2 = FeHSO4+ log_k 3.07 #a ANDRA no hi ha DHR # # Iron (II) and Iron (III) # Fe+2 = Fe+3 + e- log_k -13.010 delta_h 41.0 kJ # # Iron (III) # Fe+3 + H2O = FeOH+2 + H+ log_k -2.19 delta_h 43.514 kJ Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ log_k -5.67 delta_h 71.546 kJ Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ log_k -12.56 delta_h 103.764 kJ Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ log_k -21.6 delta_h 133.471 kJ 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ log_k -2.95 delta_h 56.484 kJ 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ log_k -6.3 delta_h 59.831 kJ Fe+3 + Cl- = FeCl+2 log_k 1.4 delta_h 5.6 kcal #no hi ha DHR a ANDRA Fe+3 + 2 Cl- = FeCl2+ log_k 2.1 delta_h 0.0 kcal #no hi ha DHR a ANDRA Fe+3 + 3 Cl- = FeCl3 log_k 1.13 #no hi es 4 Cl- + Fe+3 = FeCl4- log_k -0.79 delta_H 0.0 #no hi es Fe+3 + SO4-2 = FeSO4+ log_k 4.1 delta_h 16.359 kJ Fe+3 + HSO4- = FeHSO4+2 log_k 2.48 #no hi es Fe+3 + 2 SO4-2 = Fe(SO4)2- log_k 5.40 delta_h 19.248 kJ CO3-2 + Fe+3 = FeCO3+ log_k 9.72 delta_h -64.906 kJ #Nohi es # # Aluminum # Al+3 + H2O = AlOH+2 + H+ log_k -5.00 delta_h 47.214 kJ Al+3 + 2 H2O = Al(OH)2+ + 2 H+ log_k -10.1 delta_h 112.56 kJ Al+3 + 3 H2O = Al(OH)3 + 3 H+ log_k -16.95 delta_h 166.9 kJ Al+3 + 4 H2O = Al(OH)4- + 4 H+ log_k -22.25 delta_h 181.925 kJ Al+3 + 2H2O = AlO2- + 4 H+ log_k -22.8833 delta_h 180.899 kJ #no hi es Al+3 + SO4-2 = AlSO4+ log_k 3.02 delta_h 9.581 kJ Al+3 + 2SO4-2 = Al(SO4)2- log_k 4.9 delta_h 12.845 kJ Al+3 + H+ + SO4-2 = AlHSO4+2 log_k 2.45 #ANDRA no dona DHr # # Silicon # H4SiO4 = H3SiO4- + H+ log_k -9.93 delta_h 25.6 kJ H4SiO4 = H2SiO4-2 + 2 H+ log_k -23.14 delta_h 75.0 kJ # # Copper (II) # Cu+2 + H2O = CuOH+ + H+ log_k -7.2875 delta_h 0.0 kcal # no hi es Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ log_k -13.680 #no hi es Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ log_k -26.900 #no hi es Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ log_k -39.600 #no hi es Cu+2 + SO4-2 = CuSO4 log_k 2.310 delta_h 1.220 kcal #no hi es 2 HCO3- + Cu+2 = Cu(CO3)2-2 + 2 H+ log_k -10.4757 delta_H 0.0 kJ #no hi es 2 H2O + HCO3- + Cu+2 = CuCO3(OH)2-2 + 3 H+ log_k -23.444 delta_H 0.0 kJ #no hi es HCO3- + Cu+2 = CuCO3 + H+ log_k -3.3735 delta_H 0.0 kJ # no hi es Cu+2 + Cl- = CuCl+ log_k 0.430 delta_H 36.1916 kJ #no hi es 2 Cl- + Cu+2 = CuCl2 log_k 0.1585 delta_H 44.183 kJ # no hi es 4 Cl- + Cu+2 = CuCl4-2 log_k -4.59 delta_H 32.55 kJ #no hi es 2 H2O + Cu+2 = CuO2-2 + 4 H+ log_k -39.4497 delta_H 0.0 kJ #no hi es # # Copper (II) and Copper (I) # Cu+2 + e- = Cu+ log_k 2.720 delta_h 1.650 kcal #no hi es # # Copper (I) # 2 Cl- + Cu+ = CuCl2- log_k 4.8212 delta_H 0.0 kJ #no hi es 3 Cl- + Cu+ = CuCl3-2 log_k 5.6289 delta_H 1.088 kJ #no hi es PHASES Afwillite Ca3Si2O4(OH)6 + 6 H+ = 2 H4SiO4 + 3 Ca+2 + 2 H2O log_k 60.0452 delta_h -75.54 kcal #no hi es a ANDRA Al(OH)3(a) Al(OH)3 + 3H+ = Al+3 + 3H2O log_k 10.38 delta_h -27.045 kcal #No hi es a ANDRA Albite NaAlSi3O8 + 4H+ + 4H2O = Na+ + Al+3 + 3H4SiO4 log_k 2.592 delta_h -17.4 kcal #No hi es a ANDRA Alunite KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O log_k -1.346 delta_h 3.918 kcal #No hi es a ANDRA Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.64 delta_h -15.77 kJ Anorthite CaAl2Si2O8 + 8H+ = Ca+2 + 2Al+3 + 2H4SiO4 log_k 25.43 delta_h -70.66 kcal #No hi es a ANDRA Aragonite CaCO3 = Ca+2 + CO3-2 log_k -8.336 delta_h -10.832 kJ Boehmite AlOOH + 3H+ = Al+3 + 2H2O log_k 8.76 delta_h -119.636 kJ Brucite Mg(OH)2 + 2H+ = Mg+2 + 2H2O log_k 16.84 delta_h -113.386 kJ C3ASH4 Ca3Al2SiO8:4H2O + 12 H+ = 3 Ca+2 + 2 Al+3 + H4SiO4 + 8 H2O log_k 69.4 delta_h 0 #No hi es a ANDRA C4AH13 Ca4Al2(OH)14:6H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 20 H2O log_k 107.2537 delta_h 0 #No hi es a ANDRA Ca-Hemicarboaluminate Ca8Al4(CO3)(OH)26:9H2O + 26 H+ = 8 Ca+2 + 4 Al+3 + CO3-2 + 35 H2O log_k -172.0 delta_h 0 #No hi es a ANDRA Ca-Monocarboaluminate Ca4Al2(CO3)(OH)12:4H2O + 12 H+ = 4 Ca+2 + 2 Al+3 + CO3-2 + 16 H2O log_k -70.0 delta_h 0 #No hi es a ANDRA Ca-Monosulfoaluminate Ca4Al2(SO4)(OH)12:6H2O + 12 H+ = 4 Ca+2 + 2 Al+3 + SO4-2 + 18 H2O log_k 71.0 delta_h 0 #No hi es a ANDRA Calcite CaCO3 = Ca+2 + CO3-2 log_k -8.48 delta_h -9.61 kJ Chalcanthite CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O log_k -2.64 delta_h 1.44 kcal #No hi es a ANDRA Chalcedony SiO2 + 2H2O = H4SiO4 log_k -3.523 delta_h 4.615 kcal #la reaccio a TC esta malament. Chalcocite Cu2S + H+ = 2Cu+ + HS- log_k -34.619 delta_h 49.35 kcal #No hi es a ANDRA Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O log_k 68.38 delta_h -151.494 kcal #No hi es a ANDRA Covellite CuS + H+ = Cu+2 + HS- log_k -23.038 delta_h 24.01 kcal #No hi es a ANDRA Cristobalite SiO2 + 2H2O = H4SiO4 log_k -3.587 delta_h 5.5 kcal #No hi es a ANDRA CuMetal Cu = Cu+ + e- log_k -8.76 delta_h 17.13 kcal #No hi es a ANDRA Cu(OH)2 Cu(OH)2 + 2H+ = Cu+2 + 2H2O log_k 8.64 delta_h -15.25 kcal #No hi es a ANDRA Cuprite Cu2O + 2H+ = 2Cu+ + H2O log_k -1.55 delta_h 6.245 kcal #No hi es a ANDRA Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 log_k -17.090 delta_h -39.497 kJ Ettringite Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O log_k 62.5362 delta_h -91.408 kcal #No hi es a ANDRA Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O log_k 5.6556 delta_h -20.096 kcal #no l'he tocat #Fe(OH)3(a) # Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O # log_k 4.89 #Aixo es el que hi ha a ANDRA FeS(ppt) FeS + H+ = Fe+2 + HS- log_k -3.92 delta_h -0 kcal # a aNDRA no hi ha DHR Gibbsite Al(OH)3 + 3H+ = Al+3 + 3H2O log_k 8.38 delta_h -102.556 kJ Goethite FeOOH + 3H+ = Fe+3 + 2H2O log_k -0.27 delta_h -57.76 kJ Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O log_k -4.848 delta_h 1.09 kJ #A ANDRA son 1500kJ. Halite NaCl = Na+ + Cl- log_k 1.57 delta_h 0.918 kcal # a ANDRA no hi ha DHr Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O log_k -4.008 delta_h -129.26 kJ Hematite_ANDRA Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O log_k -0.05 delta_h -129.26 kJ Hydrogarnet Ca3Al2(OH)12 + 12 H+ = 3 Ca+2 + 2 Al+3 + 12 H2O log_k 78.0 delta_h 0 # no hi es a ANDRA Hydrogehlenite Ca2Al2SiO7:5H2O + 10 H+ = 2 Ca+2 + 2 Al+3 + H4SiO4 + 8 H2O log_k 49.5 delta_h 0 # no hi es a ANDRA Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ log_k -40.267 delta_h 54.684 kcal # no hi es a ANDRA Jarosite-K KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O log_k -14.8 delta_h -31.28 kcal # no hi es a ANDRA Jennite Ca9H2Si6O18(OH)8:6H2O + 18 H+ = 9 Ca+2 + 6 H4SiO4 + 8 H2O log_k 150.0 delta_h 0 # no hi es a ANDRA K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 log_k -20.573 delta_h 30.820 kcal # no hi es a ANDRA K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 log_k 12.703 delta_h -59.376 kcal # no hi es a ANDRA Kaolinite Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O log_k 5.726 delta_h -35.28 kcal Kaolinite_ANDRA Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O log_k -39.97 delta_h -6.77 kJ Katoite Ca3Al2(OH)12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 12 H2O log_k 78.9437 delta_h 0 #No hi es a ANDRA Mackinawite FeS + H+ = Fe+2 + HS- log_k -4.65 delta_h -0 kcal #no hi ha DHr a ANDRA Magnesite MgCO3 = Mg+2 + CO3-2 log_k -8.2 delta_h -6.169 kcal #A Andra no hi ha DHR Magnetite Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O log_k 3.737 delta_h -50.46 kcal Magnetite_ANDRA Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O log_k 10.15 delta_h -215.772 kJ Malachite Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2 log_k -5.18 delta_h -15.61 kcal # no hi es a ANDRA Melanterite FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O log_k -2.47 delta_h 2.86 kcal # Montmor-Ca Ca.165Mg.33Al1.67Si4O10(OH)2 + 6 H+ + 4 H2O = 0.165 Ca+2 + 0.33 Mg+2 + 1.67 Al+3 + 4 H4SiO4 log_k 2.4952 delta_h -23.937 kcal Montmor-Mg Mg.495Al1.67Si4O10(OH)2 + 6 H+ + 4 H2O = 0.495 Mg+2 + 1.67 Al+3 + 4 H4SiO4 log_k 2.3879 delta_h -24.524 kcal Montmor-Na Na.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ + 4 H2O = 0.33 Mg+2 + 0.33 Na+ + 1.67 Al+3 + 4 H4SiO4 log_k 2.4844 delta_h -22.279 kcal Portlandite Ca(OH)2 + 2H+ = Ca+2 + 2H2O log_k 22.8 delta_h -73.94 kJ Pyrite FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- log_k -24.6534 delta_h 73.8106 kcal #Pyrite # FeS2 + 14Fe+3 + 8H2O = 16 H+ + 2SO4-2 + 15 Fe+2 # log_k 98.7391 # delta_h 43.5356 kcal Pyrite_ANDRA FeS2 + 2 H+ + 2 e- = Fe+2 + 2HS- log_k -15.79 delta_h 45.05 kJ Quartz SiO2 + 2H2O = H4SiO4 log_k -4.00 delta_h 25.4 kJ Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 log_k 15.760 delta_h -10.700 kcal Siderite FeCO3 = Fe+2 + CO3-2 log_k -10.8 delta_h -5.328 kcal SiO2(a) SiO2 + 2H2O = H4SiO4 log_k -3.018 delta_h 4.44 kcal SiO2(am) SiO2 + 2H2O = H4SiO4 log_k -2.71 delta_h 3.91 kcal Sulfur S + H+ + 2e- = HS- log_k -2.11 delta_h -4.2 kcal Sylvite KCl = Cl- + K+ log_k 0.84 delta_h 17.464 kJ Talc Mg3Si4O10(OH)2 + 4H2O + 6H+ = 3Mg+2 + 4H4SiO4 log_k 23.055 delta_h -35.005 kcal Tenorite CuO + 2H+ = Cu+2 + H2O log_k 7.62 delta_h -15.24 kcal Tobermorite Ca5Si6O16(OH)2:4H2O + 2 H2O + 10 H+ = 5 Ca+2 + 6 H4SiO4 log_k 65.6121 delta_h -68.561 kcal CH4(g) CH4 = CH4 log_k -2.860 delta_h -3.373 kcal CO2(g) CO2 = CO2 log_k -1.468 delta_h -4.776 kcal H2(g) H2 = H2 log_k -3.150 delta_h -1.759 kcal H2O(g) H2O = H2O log_k 1.51 delta_h -44.03 kJ # Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978) H2S(g) H2S = H2S log_k -0.997 delta_h -4.570 kcal O2(g) O2 = O2 log_k -2.960 delta_h -1.844 kcal EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- log_k 0.0 Na+ + X- = NaX log_k 0.0 -gamma 4.0 0.075 K+ + X- = KX log_k 0.7 -gamma 3.5 0.015 delta_h -4.3 # Jardine & Sparks, 1984 Ca+2 + 2X- = CaX2 log_k 0.8 -gamma 5.0 0.165 delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 log_k 0.6 -gamma 5.5 0.2 delta_h 7.4 # Laudelout et al., 1968 SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH log_k 0.0 Hfo_sOH + H+ = Hfo_sOH2+ log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH log_k 0.0 Hfo_wOH + H+ = Hfo_wOH2+ log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### # # Cations from table 10.1 or 10.5 # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # # Cations from table 10.2 # # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ log_k 0.6 # table 10.5 # # Derived constants table 10.5 # # Magnesium Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ log_k -4.6 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ # log_k 0.7 # LFER using table 10.5 # Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ # log_k -2.5 # LFER using table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ log_k -2.98 Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ log_k -11.55 ############################################### # ANIONS # ############################################### # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 log_k 0.79 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O # log_k 12.56 # # Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O # log_k 20.62 # 9/19/96 # Added analytical expression for H2S, NH3, KSO4. # Added species CaHSO4+. # Added delta H for Goethite. RATES ########### #K-feldspar ########### # # Sverdrup, H.U., 1990, The kinetics of base cation release due to # chemical weathering: Lund University Press, Lund, 246 p. # # Example of KINETICS data block for K-feldspar rate: # KINETICS 1 # K-feldspar # -m0 2.16 # 10% K-fsp, 0.1 mm cubes # -m 1.94 # -parms 1.36e4 0.1 K-feldspar -start 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) 3 rem parm(2) = corrects for field rate relative to lab rate 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) 10 dif_temp = 1/TK - 1/298 20 pk_H = 12.5 + 3134 * dif_temp 30 pk_w = 15.3 + 1838 * dif_temp 40 pk_OH = 14.2 + 3134 * dif_temp 50 pk_CO2 = 14.6 + 1677 * dif_temp #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time 81 rem decrease rate on precipitation 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 100 save moles -end ########### #Albite ########### # # Sverdrup, H.U., 1990, The kinetics of base cation release due to # chemical weathering: Lund University Press, Lund, 246 p. # # Example of KINETICS data block for Albite rate: # KINETICS 1 # Albite # -m0 0.43 # 2% Albite, 0.1 mm cubes # -parms 2.72e3 0.1 Albite -start 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) 3 rem parm(2) = corrects for field rate relative to lab rate 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) 10 dif_temp = 1/TK - 1/298 20 pk_H = 12.5 + 3359 * dif_temp 30 pk_w = 14.8 + 2648 * dif_temp 40 pk_OH = 13.7 + 3359 * dif_temp #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... 50 pk_CO2 = 14.0 + 1677 * dif_temp #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time 81 rem decrease rate on precipitation 90 if SR("Albite") > 1 then moles = moles * 0.1 100 save moles -end ######## #Calcite ######## # # Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, # American Journal of Science, v. 278, p. 179-216. # # Example of KINETICS data block for calcite rate: # # KINETICS 1 # Calcite # -tol 1e-8 # -m0 3.e-3 # -m 3.e-3 # -parms 5.0 0.6 Calcite -start 1 REM Modified from Plummer and others, 1978 2 REM M = current moles of calcite 3 REM M0 = initial moles of calcite 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell) 5 REM parm(2) = exponent for M/M0 for surface area correction 10 REM rate = 0 if no calcite and undersaturated 20 si_cc = SI("Calcite") 30 if (M <= 0 and si_cc < 0) then goto 300 40 k1 = 10^(0.198 - 444.0 / TK ) 50 k2 = 10^(2.84 - 2177.0 / TK ) 60 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK ) 70 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK ) 80 REM surface area calculation 90 t = 1 100 if M0 > 0 then t = M/M0 110 if t = 0 then t = 1 120 area = PARM(1) * (t)^PARM(2) 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O") 140 REM 1e-3 converts mmol to mol 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc)) 160 moles = rate * TIME 170 REM do not dissolve more calcite than present 180 if (moles > M) then moles = M 190 if (moles >= 0) then goto 300 200 REM do not precipitate more Ca or C(4) than present 210 temp = TOT("Ca") 220 mc = TOT("C(4)") 230 if mc < temp then temp = mc 240 if -moles > temp then moles = -temp 300 SAVE moles -end ####### #Pyrite ####### # # Williamson, M.A. and Rimstidt, J.D., 1994, # Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. # # Example of KINETICS data block for pyrite rate: # KINETICS 1 # Pyrite # -tol 1e-8 # -m0 5.e-4 # -m 5.e-4 # -parms 2.0 0.67 .5 -0.11 Pyrite -start 1 rem Williamson and Rimstidt, 1994 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) 3 rem parm(3) = exp for O2 parm(4) = exp for H+ 10 if (m <= 0) then goto 200 20 if (si("Pyrite") >= 0) then goto 200 20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) 30 moles = 10^rate * time 40 if (moles > m) then moles = m 200 save moles -end ########## #Organic_C ########## # # Example of KINETICS data block for Organic_C rate: # KINETICS 1 # Organic_C # -tol 1e-8 # # m in mol/kgw # -m0 5e-3 # -m 5e-3 Organic_C -start 1 rem Additive Monod kinetics 2 rem Electron acceptors: O2, NO3, and SO4 10 if (m <= 0) then goto 200 20 mO2 = mol("O2") 30 mNO3 = tot("N(5)") 40 mSO4 = tot("S(6)") 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) 70 moles = rate * m * (m/m0) * time 80 if (moles > m) then moles = m 200 save moles -end END
TITLE SKB-LOT EXCHANGE_SPECIES #constantes de Bradbury and Baeyens (2002) X- = X- log_k 0.0 X- + Na+ = NaX log_k 0.0 X- + H+ = HX log_k -100.0 X- = X- log_k 0.0 X- + Na+ = NaX log_k 0.0 2X- + Ca+2 = CaX2 log_k 0.41 X- = X- log_k 0.0 X- + Na+ = NaX log_k 0.0 2X- + Mg+2 = MgX2 log_k 0.34 X- = X- log_k 0.0 X- + Na+ = NaX log_k 0.0 X- + K+ = KX log_k 0.60 SOLUTION 0 Äspö water units mol/kgw pH 7.7 temp 15.0 pe -3.3 Ca 4.73e-2 C 1.64e-4 S 5.83e-3 Na 9.13e-2 Cl 1.81e-1 K 2.05e-4 Mg 1.73e-3 Si 1.46e-4 Fe 4.30e-6 SOLUTION 1 Granite water: Aspo units mol/kgw pH 7.7 temp 15.0 pe -3.3 Ca 4.73e-2 C 1.64e-4 S 5.83e-3 Na 9.13e-2 Cl 1.81e-1 K 2.05e-4 Mg 1.73e-3 Si 1.46e-4 Fe 4.30e-6 SOLUTION 2 Bentonite water:equilibrated MX80-Aspo granite units mol/kgw pH 8.40 temp 15.0 pe -4.30 Ca 15.64e-3 C 0.18e-3 S 19.58e-3 Na 173.02e-3 Cl 175.00e-3 K 0.63e-3 Mg 3.04e-3 Si 0.004e-3 Fe 0.10e-3 SOLUTION 3 Bentonite water:equilibrated MX80-Aspo granite units mol/kgw pH 8.51 temp 15.0 pe -4.36 Ca 19.05e-3 C 0.16e-3 S 62.97e-3 Na 222.10e-3 Cl 149.31e-3 K 0.78e-3 Mg 5.55e-3 Si 0.004e-3 Fe 0.11e-3 SOLUTION 4 Bentonite water:equilibrated MX80-Aspo granite units mol/kgw pH 8.74 temp 15.0 pe -4.59 Ca 16.28e-3 C 0.13e-3 S 76.97e-3 Na 209.96e-3 Cl 102.43e-3 K 0.74e-3 Mg 5.41e-3 Si 0.0023e-3 Fe 0.093e-3 SOLUTION 5 Bentonite water:equilibrated MX80-Aspo granite units mol/kgw pH 8.99 temp 15.0 pe -4.84 Ca 14.56e-3 C 0.09e-3 S 88.54e-3 Na 190.91e-3 Cl 54.53e-3 K 0.69e-3 Mg 4.92e-3 Si 0.0011e-3 Fe 0.085e-3 SOLUTION 6 Bentonite water:equilibrated MX80-Aspo granite units mol/kgw pH 9.18 temp 15.0 pe -5.03 Ca 13.71e-3 C 0.076e-3 S 96.21e-3 Na 179.94e-3 Cl 25.16e-3 K 0.66e-3 Mg 4.64e-3 Si 0.00035e-3 Fe 0.08e-3 SOLUTION 7 Bentonite water:equilibrated MX80-Aspo granite units mol/kgw pH 9.26 temp 15.0 pe -5.11 Ca 13.42e-3 C 0.07e-3 S 99.22e-3 Na 176.12e-3 Cl 14.36e-3 K 0.65e-3 Mg 4.55e-3 Si 0.00007e-3 Fe 0.079e-3 SOLUTION 8 Bentonite water:equilibrated MX80-Aspo granite units mol/kgw pH 9.27 temp 15.0 pe -5.12 Ca 13.36e-3 C 0.068e-3 S 99.85e-3 Na 175.360e-3 Cl 12.15e-3 K 0.65e-3 Mg 4.53e-3 Si 0.00002e-3 Fe 0.079e-3 EQUILIBRIUM_PHASES 1 Granite solid phases Gypsum 0.0 0.0 Calcite 0.0 0.0 Fe(OH)3(a) 0.0 0.0 Siderite 0.0 0.0 Goethite 0.0 0.0 Pyrite 0.0 13.1 EQUILIBRIUM_PHASES 2 Bentonite solid phases Gypsum 0.0 0.0 Calcite 0.0 0.22988 Cristobalite 0.0 8.69 Siderite 0.0 0.22001 Fe(OH)3(a) 0.0 0.0 pyrite 0.0 0.09 EQUILIBRIUM_PHASES 3 Bentonite solid phases Gypsum 0.0 0.03749 Calcite 0.0 0.23 Cristobalite 0.0 8.69 Siderite 0.0 0.21993 Fe(OH)3(a) 0.0 0.0 pyrite 0.0 0.09 EQUILIBRIUM_PHASES 4 Bentonite solid phases Gypsum 0.0 0.06371 Calcite 0.0 0.23002 Cristobalite 0.0 8.69 Siderite 0.0 0.21993 Fe(OH)3(a) 0.0 0.0 pyrite 0.0 0.09 EQUILIBRIUM_PHASES 5 Bentonite solid phases Gypsum 0.0 0.06548 Calcite 0.0 0.23002 Cristobalite 0.0 8.69 Siderite 0.0 0.21993 Fe(OH)3(a) 0.0 0.0 pyrite 0.0 0.09 EQUILIBRIUM_PHASES 6 Bentonite solid phases Gypsum 0.0 0.06536 Calcite 0.0 0.23002 Cristobalite 0.0 8.69 Siderite 0.0 0.21993 Fe(OH)3(a) 0.0 0.0 pyrite 0.0 0.09 EQUILIBRIUM_PHASES 7 Bentonite solid phases Gypsum 0.0 0.06531 Calcite 0.0 0.23002 Cristobalite 0.0 8.69 Siderite 0.0 0.21993 Fe(OH)3(a) 0.0 0.0 pyrite 0.0 0.09 EQUILIBRIUM_PHASES 8 Bentonite solid phases Gypsum 0.0 0.06531 Calcite 0.0 0.23002 Cristobalite 0.0 8.69 Siderite 0.0 0.21993 Fe(OH)3(a) 0.0 0.0 pyrite 0.0 0.09 EXCHANGE 2 Bentonite exchange species NaX 1.76220 KX 0.02748 CaX2 0.40196 MgX2 0.06426 EXCHANGE 3 Bentonite exchange species NaX 1.97970 KX 0.02868 CaX2 0.29064 MgX2 0.06803 EXCHANGE 4 Bentonite exchange species NaX 2.03050 KX 0.02883 CaX2 0.26425 MgX2 0.07016 EXCHANGE 5 Bentonite exchange species NaX 2.03470 KX 0.02884 CaX2 0.26204 MgX2 0.07037 EXCHANGE 6 Bentonite exchange species NaX 2.03460 KX 0.02884 CaX2 0.26210 MgX2 0.07037 EXCHANGE 7 Bentonite exchange species NaX 2.03450 KX 0.02884 CaX2 0.26214 MgX2 0.07036 EXCHANGE 8 Bentonite exchange species NaX 2.03450 KX 0.02884 CaX2 0.26204 MgX2 0.07036 REACTION_TEMPERATURE 0-8 15.0 SELECTED_OUTPUT -file Chem.sel -totals Na Cl Ca C C(4) Fe Fe(3) Si S S(6) K Mg -molalities NaX KX CaX2 MgX2 -equilibrium_phases Gypsum Calcite cristobalite Fe(OH)3(a) Siderite goethite pyrite -temperature -saturation_indices Gypsum Calcite Cristobalite Fe(OH)3(a) Siderite Cu(OH)2 Cuprite Tenorite Malachite Chalcocite anhydrite pyrite goethite dolomite CO2(g) O2(g) END
TITLE SR_MET reference case UNITS time years horizontal_grid mm vertical_grid mm head m hydraulic_conductivity m/s specific_storage 1/m dispersivity m flux m/s SOLUTION_METHOD direct save_directions 5 space_differencing 0.0 time_differencing 1.0 FLOW_ONLY FALSE STEADY_FLOW FALSE GRID nonuniform X 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3087.5 3175 3262.5 3350 3437.5 3525 3612.5 3700 3787.5 3875 3962.5 4050 4137.5 4225 4312.5 4400 4487.5 4575 4662.5 4750 5050 5350 5650 5950 6250 6550 6850 7150 7450 7750 nonuniform Y 0 87.5 175 262.5 350 437.5 525 612.5 700 787.5 875 1175 1475 1775 2075 2375 2675 2975 3275 3575 3875 nonuniform Z 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3087.5 3175 3262.5 3350 3437.5 3525 3612.5 3700 3787.5 3875 3962.5 4050 4137.5 4225 4312.5 4400 4487.5 4575 4662.5 4750 4837.5 4925 5012.5 5100 5187.5 5275 5362.5 5450 5537.5 5625 5712.5 5800 5887.5 5975 6062.5 6150 6237.5 6325 6412.5 6500 6587.5 6675 6762.5 6850 6937.5 7025 7112.5 7200 7287.5 7375 7462.5 7550 7637.5 7725 7812.5 7900 7987.5 8075 8162.5 8250 8337.5 8425 8512.5 8600 8687.5 8775 8862.5 8950 9037.5 9125 9212.5 9300 9387.5 9475 9562.5 9650 9737.5 9825 print_orientation XZ # chemistry_dimensions XZ FLUID_PROPERTIES compressibility 0.0 # fix compessibility !!! diffusivity 5e-10 # m^2/s MEDIA zone 0 0 0 7750 3875 9825 #granit kx 5.77e-9 ky 5.77e-9 kz 5.77e-9 porosity 0.005 storage 0 trans_dispersivity 0.015 long_dispersivity 0.150 active 1 zone 3000 0 3000 4750 875 9825 #bentonite kx 1.15e-14 ky 1.15e-14 kz 1.15e-14 porosity 0.43 storage 0 trans_dispersivity 0.015 long_dispersivity 0.150 active 1 HEAD_IC zone 0 0 0 7750 3875 9825 head 500 SPECIFIED_VALUE_BC ############# CARGA DE IZQUIERDA ##################### zone 0 0 0 0 3875 9825 head 500.0 fixed_solution_composition 0 ############# CARGA DE DERECHA ##################### zone 7750 0 0 7750 3875 9825 head 499.9845 associated_solution_composition 0 CHEMISTRY_IC zone 0 0 0 7750 3875 9825 #granite -solution 1 -equilibrium_phases 1 zone 3000 0 3000 4750 875 9825 #bentonite1 -solution 2 -equilibrium_phases 2 -exchange 2 zone 3087.5 0 3087.5 4662.5 787.5 9825 #bentonite3 -solution 4 -equilibrium_phases 4 -exchange 4 zone 3175 0 3175 4575 700 9825 #bentonite5 -solution 6 -equilibrium_phases 6 -exchange 6 zone 3262.5 0 3262.5 4487.5 612.5 9825 #bentonite7 -solution 8 -equilibrium_phases 8 -exchange 8 PRINT_INPUT media_properties true initial_conditions true boundary_conditions true fluid_properties true solution_method true TIME_CONTROL time_step 1 yr time_change 10 yr PRINT_FREQUENCY velocity 30000 yr solver_statistics 30000 yr head 30000 yr concentrations 30000 yr flow_balance 30000 yr bc_flow_rates 30000 yr END TIME_CONTROL time_step 10 yr time_change 100 yr END TIME_CONTROL time_step 100 yr time_change 1000 yr END TIME_CONTROL time_step 1000 yr time_change 10000 yr END TIME_CONTROL time_step 1000 yr time_change 30000 yr END TIME_CONTROL time_step 1000 yr time_change 45000 yr END TIME_CONTROL time_step 1000 yr time_change 60000 yr END
Please note that some U.S. Geological Survey (USGS) information accessed through this page may be preliminary in nature and presented prior to final review and approval by the Director of the USGS. This information is provided with the understanding that it is not guaranteed to be correct or complete and conclusions drawn from such information are the sole responsibility of the user.
Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.
The URL of this page is:
https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/mail/msg00479.html
Email:dlpark@usgs.gov
Last modified: $Date: 2005-09-13 21:04:21 -0600 (Tue, 13 Sep 2005) $
Visitor number [an error occurred while processing this directive] since Jan 22, 1998.