[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[no subject]



Dear David Parkhurst,

This is just a little mail to ask you for a problem I have found with PHAST.
I wanted to do a 3D model of a bentonite cilinder. I constructed a very simple grid and the model run. As I wanted to get 60000 years and I have an old computer (windows 98 2nd version) I run the model in another computer (Windows XP) which is faster. Everything was ok.
In a second step, I wanted to refine the grid. I tested the inputs in my computer because I do not know the maximum number of elements that the PHAST code can handle with.
As the result, I constructed the input I attache you. In my computer the phastinput program run ok and the phast is also correctly inizialized and then it begins to calculate. As the model itself is quite complicated it takes a long time to calculate one time step so, as I did with the simple model, I have gone to the faster computer. The phast input has also run ok but to my surprise the phast code is stopped after the 
"Successfully  processed database file
Successfully processed chemistry data file"
and the error message says
"ERROR: NULL pointer returned from malloc or realloc
ERROR: Program terminating
Stopping
Forrtl: severe (157) Program exception - access violation"

I also have tried to run these inputs in another computer with Windows XP and the same error message appeared. However, it run again in a computer with Windows 98.

a) Have you never found an error similar to this? What can I do? if the error is due to the system Windows XP, why does it not always happen?
b) Where can I found the maximum number of elements allowed by PHAST?

Thanks a lot

Cristina

---------------------------------
ATENCIÓ, nova adreça de correu i lloc d'Internet
ATENCIÓN, nueva dirección de correo y sitio de Internet
ATTENTION, new e-mail address and Internet site
---------------------------------
Dr. Cristina Domenech
ENVIROS Spain S.L.
Passeig de Rubí, 29-31
08197-Valldoreix
Spain
Tel +34 93 583 05 00
Fax +34 93 589 00 91
mailto: cdomenech@xxxxxxxxxxx
www.enviros.biz
---------------------------------

#Aquesta base de dades ha estat modificada pel projecte SRMET
#No hi ha els coeficients de les eq.virials
#No hi son tots els elements.
#l'Al no esta arreglat

SOLUTION_MASTER_SPECIES
#
#element species        alk     gfw_formula     element_gfw
#
H        H+             -1.     H               1.008
H(0)     H2             0.0     H
H(1)     H+             -1.     0.0
E        e-             0.0     0.0             0.0
O        H2O            0.0     O               16.00
O(0)     O2             0.0     O
O(-2)    H2O            0.0     0.0
Ca       Ca+2           0.0     Ca              40.08
Mg       Mg+2           0.0     Mg              24.312
Na       Na+            0.0     Na              22.9898
K        K+             0.0     K               39.102
Fe       Fe+2           0.0     Fe              55.847
Fe(+2)   Fe+2           0.0     Fe
Fe(+3)   Fe+3           -2.0    Fe
Al       Al+3           0.0     Al              26.9815
Si       H4SiO4         0.0     SiO2            28.0843
Cl       Cl-            0.0     Cl              35.453
C        CO3-2          2.0     HCO3            12.0111
C(+4)    CO3-2          2.0     HCO3
C(-4)    CH4            0.0     CH4
Alkalinity CO3-2        1.0     Ca0.5(CO3)0.5   50.05
S        SO4-2          0.0     SO4             32.064
S(6)     SO4-2          0.0     SO4
S(-2)    HS-            1.0     S
Cu       Cu+2           0.0     Cu              63.546
Cu(+2)   Cu+2           0.0     Cu
Cu(+1)   Cu+1           0.0     Cu

SOLUTION_SPECIES

H+ = H+
        log_k           0.000
#        -gamma          9.0000    0.0000

e- = e-
        log_k           0.000

H2O = H2O
        log_k           0.000

Ca+2 = Ca+2
        log_k           0.000
#        -gamma    5.0000    0.1650

Mg+2 = Mg+2
        log_k           0.000
#        -gamma    5.5000    0.2000

Na+ = Na+
        log_k           0.000
#        -gamma    4.0000    0.0750

K+ = K+
        log_k           0.000
#        -gamma    3.5000    0.0150

Fe+2 = Fe+2
        log_k           0.000
#        -gamma    6.0000    0.0000

Al+3 = Al+3
        log_k           0.000
#        -gamma    9.0000    0.0000

H4SiO4 = H4SiO4
        log_k           0.000

Cl- = Cl-
        log_k           0.000
#        -gamma    3.5000    0.0150

CO3-2 = CO3-2
        log_k           0.000
#        -gamma    5.4000    0.0000

SO4-2 = SO4-2
        log_k           0.000
#        -gamma    5.0000   -0.0400

Cu+2 = Cu+2
        log_k           0.000
#        -gamma    6.0000    0.0000
#
#
#aqueous species
#
#

#
# H and O
#

H2O = OH- + H+
        log_k           -14.000
        delta_h 13.340  kcal


2 H2O = O2 + 4 H+ + 4 e-
        log_k           -85.9
        delta_h 134.79 kcal
#aquesta delta_h no es d'ANDRA

2 H+ + 2 e- = H2
        log_k           -3.11
        delta_h -1.759 kcal
#aquesta delta_h no es d'ANDRA
#
# carbonate
#

CO3-2 + H+ = HCO3-
        log_k           10.33
        delta_h -14.7  kJ
#        -gamma    5.4000    0.0000

CO3-2 + 2 H+ = CO2 + H2O
        log_k           16.68
        delta_h -23.860  kJ

CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
        log_k           41.071
        delta_h -61.039 kcal

#
# chloride
#

H+ +  Cl-  =  HCl 
        log_k           -0.67
	delta_H		0.00 kJ	      	

#
# Sulphur
#

SO4-2 + H+ = HSO4-
        log_k           1.98
        delta_h 22.44    kJ

# HS- = S-2 + H+
#        log_k           -12.918
#        delta_h 12.1    kcal
#segons Bdades ANDRA es millor l'altra reaccio

SO4-2 + 8H+ + 8e- = S-2 +4 H2O
        log_k           -19.0
#ANDRA_TDB no hi ha DHr     


SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
        log_k           33.65
        delta_h -60.140 kcal
#no s`ha trobat a ANDRA

HS- + H+ = H2S
        log_k           6.99
        delta_h -22.3  kJ

2 H+ + SO4-2  =  H2SO4
        log_k           -1.0
	delta_H		0.0   kJ
#no hi ha valor a ANDRA

SO4-2 + H+  =  HSO4-  
        log_k           1.98
	delta_H		22.440	kJ

#
# Calcium
#


Ca+2 + H2O = CaOH+ + H+
        log_k           -12.7
        delta_h   65.035 kJ

Ca+2 + CO3-2 = CaCO3
        log_k           3.22
        delta_h 14.832   kJ

Ca+2 + CO3-2 + H+ = CaHCO3+
        log_k           11.43
        delta_h -2.565          kJ

Ca+2 + SO4-2 = CaSO4
        log_k           2.31
        delta_h 6.904   kJ

Ca+2 + HSO4- = CaHSO4+
        log_k           1.08
#no hi es

Ca+2 + Cl- = CaCl+
        log_k    0.29   
        delta_h   8.547	kJ       

Ca+2 + 2 Cl- = CaCl2
        log_k    -0.6436   
        delta_h   -5.8325	kJ       
# nohi es .

#
# Magnesium
# 

Mg+2 + H2O = MgOH+ + H+
        log_k           -11.440
        delta_h 66.672 kJ


4 Mg+2 + 4 H2O  =  Mg4(OH)4+4 + 4 H+  
        log_k           -40.30
	delta_H		0.0	
#a Andra no hi ha dHr      	

Mg+2 + CO3-2 = MgCO3
        log_k           2.88
        delta_h 11.350  kJ

Mg+2 + H+ + CO3-2 = MgHCO3+
        log_k           11.3
        delta_h -11.613          kJ

Mg+2 + SO4-2 = MgSO4
        log_k           2.36
        delta_h 5.858   kJ

Mg+2 + Cl-  =  MgCl+    
        log_k           0.35
	delta_H		5.079	kJ

#
# Sodium
#

Na+ + H2O = NaOH + H+
        log_k           -13.9
        delta_h 12.823  kcal
#a ANDRA no hi ha DHr

Na+ + CO3-2 = NaCO3-
        log_k           1.270
        delta_h 37.279   kJ

Na+ + H+ + CO3-2 = NaHCO3
        log_k           10.08
        delta_h -15 kJ

Na+ + SO4-2 = NaSO4-
        log_k           0.700
        delta_h 6.304   kJ

2 H2O + Na+ + Al+3  =  NaAlO2 + 4 H+
        log_k           -23.6266
	delta_H		190.326	kJ
#aquesta sp no hi es a aNDRA

Na+ + Cl-  =  NaCl  
        log_k           0.04
	delta_H		-0.110	kJ
#
# Potassium
#


K+ + H2O = KOH + H+
        log_k           -14.5
        delta_h 0.0   kcal
#a ANDRA no hi ha DHr

K+ + SO4-2 = KSO4-
        log_k           0.850
        delta_h 2.596   kJ
 
SO4-2 + K+ + H+  =  KHSO4 
        log_k           0.8136
	delta_H		29.8319	kJ
#no hi es

K+ +  Cl-  =  KCl
        log_k           -1.4946
	delta_H		14.1963	kJ
# a ANDRA donen log_K =0.0 i DHr=0.07. MOLt estrany, no?

#
# Iron (II)
#

Fe+2 + H2O = FeOH+ + H+
        log_k           -9.500
        delta_h 55.304  kJ

2 H2O + Fe+2  =  Fe(OH)2 + 2 H+    
        log_k           -20.6
        delta_h  119.662   kJ

3 H2O + Fe+2  =  Fe(OH)3- + 3 H+   
        log_k           -31.9
	delta_h	138.072 kJ	      

4 H2O + Fe+2  =  Fe(OH)4-2 + 4 H+   
        log_k           -46.0
	delta_H	158.797 kJ	      	

Fe+2 + Cl- = FeCl+
        log_k           0.14
        delta_h  -0.078   kJ

2 Cl- + Fe+2  =  FeCl2 
        log_k           -2.4541
	delta_H	6.46846	kJ
#no hi es a ANDRA

4 Cl- + Fe+2  =  FeCl4-2
        log_k           -1.9
	delta_h  	0.0 kJ	      	
#no hi es a ANDRA

Fe+2 + CO3-2 = FeCO3
        log_k           5.69
        delta_h -5.764 kJ

Fe+2 + HCO3- = FeHCO3+
        log_k           2.72
        delta_h  0.0 kcal
#no hi es a ANDRA

Fe+2 + SO4-2 = FeSO4
        log_k           2.2
        delta_h 13.514   kJ

Fe+2 + H+ + SO4-2 = FeHSO4+
        log_k           3.07
#a ANDRA no hi ha DHR

#
# Iron (II) and Iron (III)
# 


Fe+2 = Fe+3 + e-
        log_k           -13.010
        delta_h 41.0   kJ


#
# Iron (III)
#


Fe+3 + H2O = FeOH+2 + H+
        log_k           -2.19
        delta_h 43.514   kJ

Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
        log_k           -5.67
        delta_h 71.546    kJ

Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
        log_k           -12.56
        delta_h 103.764   kJ

Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
        log_k           -21.6
        delta_h 133.471   kJ

2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
        log_k           -2.95
        delta_h 56.484    kJ

3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
        log_k           -6.3
        delta_h 59.831    kJ

Fe+3 + Cl- = FeCl+2
        log_k           1.4
        delta_h 5.6     kcal
#no hi ha DHR a ANDRA

Fe+3 + 2 Cl- = FeCl2+
        log_k           2.1
        delta_h  0.0 kcal
#no hi ha DHR a ANDRA

Fe+3 + 3 Cl- = FeCl3
        log_k           1.13
#no hi es

4 Cl- + Fe+3  =  FeCl4-
        log_k           -0.79
	delta_H		0.0	 
#no hi es

Fe+3 + SO4-2 = FeSO4+
        log_k           4.1
        delta_h 16.359    kJ

Fe+3 + HSO4- = FeHSO4+2
        log_k           2.48
#no hi es

Fe+3 + 2 SO4-2 = Fe(SO4)2-
        log_k           5.40
        delta_h 19.248          kJ

CO3-2 + Fe+3  =  FeCO3+     
        log_k          9.72
        delta_h -64.906       kJ
#Nohi es


#
# Aluminum
#

Al+3 + H2O = AlOH+2 + H+
        log_k           -5.00
        delta_h 47.214  kJ

Al+3 + 2 H2O = Al(OH)2+ + 2 H+
        log_k           -10.1
        delta_h 112.56          kJ

Al+3 + 3 H2O = Al(OH)3 + 3 H+
        log_k           -16.95
        delta_h 166.9          kJ

Al+3 + 4 H2O = Al(OH)4- + 4 H+
        log_k           -22.25
        delta_h 181.925           kJ

Al+3 + 2H2O = AlO2- + 4 H+
        log_k           -22.8833   
        delta_h    180.899 kJ
#no hi es

Al+3 + SO4-2 = AlSO4+
        log_k           3.02
        delta_h 9.581 kJ

Al+3 + 2SO4-2 = Al(SO4)2-
        log_k           4.9
        delta_h 12.845 kJ

Al+3 + H+ + SO4-2 = AlHSO4+2
        log_k           2.45
#ANDRA no dona DHr

#
# Silicon
#

H4SiO4 = H3SiO4- + H+
        log_k           -9.93
        delta_h 25.6           kJ

H4SiO4 = H2SiO4-2 + 2 H+
        log_k           -23.14
        delta_h 75.0            kJ



#
# Copper (II)
# 

Cu+2 + H2O = CuOH+ + H+
        log_k           -7.2875
        delta_h   0.0 kcal
# no hi es

Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
        log_k           -13.680
#no hi es

Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
        log_k           -26.900
#no hi es

Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
        log_k           -39.600
#no hi es

Cu+2 + SO4-2 = CuSO4
        log_k           2.310
        delta_h 1.220   kcal
#no hi es

2 HCO3- + Cu+2  =  Cu(CO3)2-2 + 2 H+ 
        log_k           -10.4757
	delta_H	0.0	kJ
#no hi es

2 H2O +  HCO3- + Cu+2  =  CuCO3(OH)2-2 + 3 H+
        log_k           -23.444
	delta_H	0.0	kJ
#no hi es

HCO3- + Cu+2  =  CuCO3 + H+
        log_k           -3.3735
	delta_H	0.0	  kJ
# no hi es

Cu+2 + Cl-  =  CuCl+
        log_k           0.430
	delta_H	36.1916	  kJ    	
#no hi es
 
2 Cl- + Cu+2  =  CuCl2 
        log_k           0.1585
	delta_H	44.183       kJ
# no hi es

4 Cl- + Cu+2  =  CuCl4-2    
        log_k           -4.59
	delta_H	32.55 kJ 
#no hi es

2 H2O + Cu+2  =  CuO2-2 + 4 H+
        log_k           -39.4497
	delta_H	0.0      kJ	
#no hi es
 
#
# Copper (II) and Copper (I)
# 

Cu+2 + e- = Cu+
        log_k           2.720
        delta_h 1.650   kcal
#no hi es

#
# Copper (I)
# 

2 Cl- + Cu+  =  CuCl2-
        log_k           4.8212
	delta_H	0.0      kJ
#no hi es

3 Cl- + Cu+  =  CuCl3-2  
        log_k           5.6289
	delta_H 1.088      kJ	 
#no hi es 


PHASES

Afwillite
        Ca3Si2O4(OH)6 + 6 H+ = 2 H4SiO4 + 3 Ca+2 + 2 H2O
        log_k           60.0452
        delta_h	-75.54	kcal
#no hi es a ANDRA

Al(OH)3(a)
        Al(OH)3 + 3H+ = Al+3 + 3H2O
        log_k   10.38
        delta_h -27.045 kcal
#No hi es a ANDRA

Albite
        NaAlSi3O8 + 4H+ + 4H2O = Na+ + Al+3 + 3H4SiO4
        log_k   2.592
        delta_h -17.4   kcal
#No hi es a ANDRA

Alunite
        KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O
        log_k   -1.346
        delta_h 3.918   kcal
#No hi es a ANDRA

Anhydrite
        CaSO4 = Ca+2 + SO4-2
        log_k   -4.64
        delta_h -15.77 kJ

Anorthite
        CaAl2Si2O8 + 8H+ = Ca+2 + 2Al+3 + 2H4SiO4
        log_k   25.43
        delta_h -70.66  kcal
#No hi es a ANDRA

Aragonite
        CaCO3 = Ca+2 + CO3-2
        log_k   -8.336
        delta_h -10.832 kJ

Boehmite
        AlOOH + 3H+ = Al+3 + 2H2O
        log_k   8.76
        delta_h -119.636  kJ

Brucite
        Mg(OH)2 + 2H+ = Mg+2 + 2H2O
        log_k   16.84
        delta_h -113.386  kJ

C3ASH4
     Ca3Al2SiO8:4H2O + 12 H+ = 3 Ca+2 + 2 Al+3 + H4SiO4 + 8 H2O
        log_k     69.4
        delta_h	0
#No hi es a ANDRA

C4AH13
       Ca4Al2(OH)14:6H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 20 H2O
        log_k           107.2537
        delta_h	0
#No hi es a ANDRA

Ca-Hemicarboaluminate
     Ca8Al4(CO3)(OH)26:9H2O + 26 H+ = 8 Ca+2 + 4 Al+3 + CO3-2 + 35 H2O
        log_k     -172.0
        delta_h	  0
#No hi es a ANDRA

Ca-Monocarboaluminate
     Ca4Al2(CO3)(OH)12:4H2O + 12 H+ = 4 Ca+2 + 2 Al+3 + CO3-2 + 16 H2O
        log_k     -70.0
        delta_h	0
#No hi es a ANDRA

Ca-Monosulfoaluminate
     Ca4Al2(SO4)(OH)12:6H2O + 12 H+ = 4 Ca+2 + 2 Al+3 + SO4-2 + 18 H2O
        log_k     71.0
        delta_h	0
#No hi es a ANDRA

Calcite
        CaCO3 = Ca+2 + CO3-2
        log_k   -8.48
        delta_h -9.61  kJ

Chalcanthite
        CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O
        log_k   -2.64
        delta_h 1.44    kcal
#No hi es a ANDRA

Chalcedony
        SiO2 + 2H2O = H4SiO4
        log_k   -3.523
        delta_h 4.615   kcal
#la reaccio a TC esta malament.

Chalcocite
        Cu2S + H+ = 2Cu+ + HS-
        log_k   -34.619
        delta_h 49.35   kcal
#No hi es a ANDRA

Chlorite(14A)
        Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O
        log_k           68.38
        delta_h -151.494 kcal
#No hi es a ANDRA

Covellite
        CuS + H+ = Cu+2 + HS-
        log_k   -23.038
        delta_h 24.01   kcal
#No hi es a ANDRA

Cristobalite
        SiO2 + 2H2O = H4SiO4
        log_k   -3.587
        delta_h 5.5     kcal
#No hi es a ANDRA

CuMetal
        Cu = Cu+ + e-
        log_k   -8.76
        delta_h 17.13   kcal
#No hi es a ANDRA

Cu(OH)2
        Cu(OH)2 + 2H+ = Cu+2 + 2H2O
        log_k   8.64
        delta_h -15.25  kcal
#No hi es a ANDRA

Cuprite
        Cu2O + 2H+ = 2Cu+ + H2O
        log_k   -1.55
        delta_h 6.245   kcal
#No hi es a ANDRA

Dolomite
        CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
        log_k           -17.090
        delta_h -39.497  kJ

Ettringite
        Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O
        log_k           62.5362
        delta_h	-91.408	kcal
#No hi es a ANDRA

Fe(OH)3(a)
        Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
        log_k           5.6556
        delta_h -20.096   kcal
#no l'he tocat

#Fe(OH)3(a)
#        Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
#        log_k           4.89
#Aixo es el que hi ha a ANDRA       

FeS(ppt)
        FeS + H+ = Fe+2 + HS-
        log_k           -3.92
        delta_h -0      kcal
# a aNDRA no hi ha DHR

Gibbsite
        Al(OH)3 + 3H+ = Al+3 + 3H2O
        log_k   8.38
        delta_h -102.556   kJ

Goethite
        FeOOH + 3H+ = Fe+3 + 2H2O
        log_k   -0.27
        delta_h -57.76 kJ

Gypsum
        CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O
        log_k   -4.848
        delta_h 1.09  kJ
#A ANDRA son 1500kJ.

Halite
        NaCl = Na+ + Cl- 
        log_k           1.57
        delta_h 0.918 kcal
# a ANDRA no hi ha DHr

Hematite
        Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
        log_k           -4.008
        delta_h -129.26 kJ
Hematite_ANDRA
        Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
        log_k           -0.05
        delta_h -129.26 kJ

Hydrogarnet
     Ca3Al2(OH)12 + 12 H+ = 3 Ca+2 + 2 Al+3 + 12 H2O
        log_k     78.0
        delta_h	0
# no hi es a ANDRA

Hydrogehlenite
     Ca2Al2SiO7:5H2O + 10 H+ = 2 Ca+2 + 2 Al+3 + H4SiO4 + 8 H2O
        log_k     49.5
        delta_h	0
# no hi es a ANDRA

Illite
        K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+
        log_k           -40.267
        delta_h 54.684 kcal
# no hi es a ANDRA

Jarosite-K
        KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O
        log_k   -14.8
        delta_h -31.28  kcal
# no hi es a ANDRA

Jennite
     Ca9H2Si6O18(OH)8:6H2O + 18 H+ = 9 Ca+2 + 6 H4SiO4 + 8 H2O
        log_k     150.0
        delta_h	0
# no hi es a ANDRA

K-feldspar
        KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
        log_k           -20.573
        delta_h 30.820  kcal
# no hi es a ANDRA

K-mica
        KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
        log_k           12.703
        delta_h -59.376 kcal
# no hi es a ANDRA

Kaolinite
        Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O
        log_k   5.726
        delta_h -35.28  kcal

Kaolinite_ANDRA
        Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O
        log_k   -39.97
        delta_h -6.77  kJ

Katoite
        Ca3Al2(OH)12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 12 H2O
        log_k           78.9437
        delta_h 	0
#No hi es a ANDRA

Mackinawite
        FeS + H+ = Fe+2 + HS-
        log_k           -4.65
        delta_h -0      kcal
#no hi ha DHr a ANDRA

Magnesite
        MgCO3 = Mg+2 + CO3-2
        log_k   -8.2
        delta_h -6.169  kcal
#A Andra no hi ha DHR

Magnetite
        Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O
        log_k   3.737
        delta_h -50.46  kcal

Magnetite_ANDRA
        Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O
        log_k   10.15
        delta_h -215.772  kJ

Malachite
        Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2
        log_k   -5.18
        delta_h -15.61  kcal
# no hi es a ANDRA

Melanterite
        FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O
        log_k   -2.47
        delta_h 2.86    kcal
#
Montmor-Ca
        Ca.165Mg.33Al1.67Si4O10(OH)2 + 6 H+ + 4 H2O = 0.165 Ca+2 + 0.33 Mg+2 + 1.67 Al+3 + 4 H4SiO4
        log_k           2.4952
        delta_h	-23.937	kcal

Montmor-Mg
        Mg.495Al1.67Si4O10(OH)2 + 6 H+ + 4 H2O = 0.495 Mg+2 + 1.67 Al+3 + 4 H4SiO4
        log_k           2.3879
        delta_h	-24.524	kcal

Montmor-Na
        Na.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ + 4 H2O = 0.33 Mg+2 + 0.33 Na+ + 1.67 Al+3 + 4 H4SiO4
        log_k           2.4844
        delta_h	-22.279	kcal

Portlandite
        Ca(OH)2 + 2H+ = Ca+2 + 2H2O
        log_k   22.8
        delta_h -73.94  kJ

Pyrite
        FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS-
        log_k           -24.6534
        delta_h	73.8106	kcal

#Pyrite
#        FeS2 + 14Fe+3 + 8H2O = 16 H+ + 2SO4-2 + 15 Fe+2 
#        log_k           98.7391
#        delta_h	43.5356	kcal

Pyrite_ANDRA
	FeS2 + 2 H+ + 2 e- = Fe+2 + 2HS-
        log_k           -15.79
        delta_h         45.05   kJ
Quartz
        SiO2 + 2H2O = H4SiO4
        log_k   -4.00
        delta_h 25.4    kJ

Sepiolite
        Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
        log_k           15.760
        delta_h -10.700 kcal

Siderite
        FeCO3 = Fe+2 + CO3-2
        log_k   -10.8
        delta_h -5.328  kcal

SiO2(a)
        SiO2 + 2H2O = H4SiO4
        log_k   -3.018
        delta_h 4.44    kcal

SiO2(am)
        SiO2 + 2H2O = H4SiO4
        log_k   -2.71
        delta_h 3.91    kcal

Sulfur
        S + H+ + 2e- = HS-
        log_k   -2.11
        delta_h -4.2    kcal

Sylvite
        KCl = Cl- + K+
        log_k           0.84
       delta_h	17.464	kJ

Talc
        Mg3Si4O10(OH)2 + 4H2O + 6H+ = 3Mg+2 + 4H4SiO4
        log_k   23.055
        delta_h -35.005 kcal

Tenorite
        CuO + 2H+ = Cu+2 + H2O
        log_k   7.62
        delta_h -15.24  kcal

Tobermorite
        Ca5Si6O16(OH)2:4H2O + 2 H2O + 10 H+ = 5 Ca+2 + 6 H4SiO4
        log_k           65.6121
        delta_h 	-68.561	kcal

CH4(g)
        CH4 = CH4
        log_k           -2.860
        delta_h -3.373  kcal

CO2(g)
        CO2 = CO2
        log_k           -1.468
        delta_h -4.776 kcal

H2(g)
        H2 = H2
        log_k           -3.150
        delta_h -1.759  kcal

H2O(g)
        H2O = H2O
        log_k           1.51
        delta_h         -44.03   kJ
#    Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978)

H2S(g)
        H2S = H2S
        log_k           -0.997
        delta_h -4.570  kcal

O2(g)
        O2 = O2
        log_k           -2.960
        delta_h -1.844  kcal

EXCHANGE_MASTER_SPECIES
        X       X-
EXCHANGE_SPECIES
        X- = X-
        log_k           0.0

        Na+ + X- = NaX
        log_k   0.0
        -gamma  4.0     0.075

        K+ + X- = KX
        log_k   0.7
        -gamma  3.5     0.015
        delta_h  -4.3   # Jardine & Sparks, 1984

        Ca+2 + 2X- = CaX2
        log_k   0.8
        -gamma  5.0     0.165
        delta_h  7.2    # Van Bladel & Gheyl, 1980

        Mg+2 + 2X- = MgX2
        log_k   0.6
        -gamma  5.5     0.2
        delta_h  7.4    # Laudelout et al., 1968

SURFACE_MASTER_SPECIES
        Hfo_s  Hfo_sOH
        Hfo_w  Hfo_wOH
SURFACE_SPECIES
#   All surface data from
#   Dzombak and Morel, 1990
#
#
#   Acid-base data from table 5.7
#
#   strong binding site--Hfo_s,

        Hfo_sOH = Hfo_sOH
        log_k  0.0

        Hfo_sOH  + H+ = Hfo_sOH2+
        log_k  7.29    # = pKa1,int

        Hfo_sOH = Hfo_sO- + H+
        log_k  -8.93   # = -pKa2,int

#   weak binding site--Hfo_w

        Hfo_wOH = Hfo_wOH
        log_k  0.0

        Hfo_wOH  + H+ = Hfo_wOH2+
        log_k  7.29    # = pKa1,int

        Hfo_wOH = Hfo_wO- + H+
        log_k  -8.93   # = -pKa2,int

###############################################
#             CATIONS                         #
###############################################
#
#   Cations from table 10.1 or 10.5
#
#   Calcium
        Hfo_sOH + Ca+2 = Hfo_sOHCa+2
        log_k  4.97

        Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
        log_k -5.85
#
#   Cations from table 10.2
#
#   Copper
        Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
        log_k  2.89

        Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
        log_k  0.6                      # table 10.5
#
#   Derived constants table 10.5
#
#   Magnesium
        Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
        log_k -4.6
# Iron
#        Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
#        log_k   0.7     # LFER using table 10.5

#        Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
#        log_k -2.5      # LFER using table 10.5

# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm.
         Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
         log_k   -0.95
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
         Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
         log_k -2.98

         Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
         log_k -11.55

###############################################
#             ANIONS                          #
###############################################
#
#   Anions from table 10.8
#
#   Sulfate
        Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
        log_k   7.78

        Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
        log_k   0.79
#
# Carbonate: Van Geen et al., 1994 reoptimized for HFO
# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L
#
#        Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
#        log_k   12.56
# 
#        Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
#        log_k   20.62

# 9/19/96
#       Added analytical expression for H2S, NH3, KSO4.
#       Added species CaHSO4+.
#       Added delta H for Goethite.

RATES

###########
#K-feldspar
###########
#
# Sverdrup, H.U., 1990, The kinetics of base cation release due to 
# chemical weathering: Lund University Press, Lund, 246 p.
#
# Example of KINETICS data block for K-feldspar rate:
#       KINETICS 1
#       K-feldspar
#               -m0 2.16  # 10% K-fsp, 0.1 mm cubes
#               -m  1.94
#               -parms 1.36e4  0.1

K-feldspar
 -start
   1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
   2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
   3 rem parm(2) = corrects for field rate relative to lab rate
   4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
   
   10    dif_temp = 1/TK - 1/298
   20    pk_H = 12.5 + 3134 * dif_temp
   30    pk_w = 15.3 + 1838 * dif_temp
   40    pk_OH = 14.2 + 3134 * dif_temp
   50    pk_CO2 = 14.6 + 1677 * dif_temp
   #60   pk_org = 13.9 + 1254 * dif_temp  # rate increase with DOC
   70    rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
   71    rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 
   #72   rate = rate + 10^-pk_org * TOT("Doc")^0.4
   80    moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time
   81 rem decrease rate on precipitation
   90    if SR("K-feldspar") > 1 then moles = moles * 0.1
   100   save moles
 -end

###########
#Albite
###########
#
# Sverdrup, H.U., 1990, The kinetics of base cation release due to 
# chemical weathering: Lund University Press, Lund, 246 p.
#
# Example of KINETICS data block for Albite rate:
#       KINETICS 1
#       Albite
#               -m0 0.43  # 2% Albite, 0.1 mm cubes
#               -parms 2.72e3  0.1

Albite
 -start
   1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
   2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
   3 rem parm(2) = corrects for field rate relative to lab rate
   4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
   
   10    dif_temp = 1/TK - 1/298
   20    pk_H = 12.5 + 3359 * dif_temp
   30    pk_w = 14.8 + 2648 * dif_temp
   40    pk_OH = 13.7 + 3359 * dif_temp
   #41 rem         ^12.9 in Sverdrup, but larger than for oligoclase...
   50    pk_CO2 = 14.0 + 1677 * dif_temp
   #60   pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC
   70    rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
   71    rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 
   #72   rate = rate + 10^-pk_org * TOT("Doc")^0.4
   80    moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time
   81 rem decrease rate on precipitation
   90    if SR("Albite") > 1 then moles = moles * 0.1
   100   save moles
 -end

########
#Calcite
########
#
# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, 
# American Journal of Science, v. 278, p. 179-216.
#
# Example of KINETICS data block for calcite rate:
#
#       KINETICS 1
#       Calcite 
#               -tol    1e-8
#               -m0     3.e-3
#               -m      3.e-3
#               -parms  5.0      0.6
Calcite
  -start
   1 REM        Modified from Plummer and others, 1978
   2 REM        M = current moles of calcite
   3 REM        M0 = initial moles of calcite
   4 REM        parm(1) = Area/Volume, cm^2/L   (or cm^2 per cell)
   5 REM        parm(2) = exponent for M/M0 for surface area correction
   10  REM rate = 0 if no calcite and undersaturated
   20    si_cc = SI("Calcite")
   30    if (M <= 0  and si_cc < 0) then goto 300
   40    k1 = 10^(0.198 - 444.0 / TK )
   50    k2 = 10^(2.84 - 2177.0 / TK )
   60    if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK )
   70    if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK )
   80  REM surface area calculation
   90    t = 1
   100   if M0 > 0 then t = M/M0
   110   if t = 0 then t = 1
   120   area = PARM(1) * (t)^PARM(2)
   130   rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")
   140 REM 1e-3 converts mmol to mol
   150   rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc))
   160   moles = rate * TIME
   170 REM do not dissolve more calcite than present
   180   if (moles > M) then moles = M
   190   if (moles >= 0) then goto 300
   200 REM do not precipitate more Ca or C(4) than present
   210   temp = TOT("Ca")
   220   mc  = TOT("C(4)")
   230   if mc < temp then temp = mc
   240   if -moles > temp then moles = -temp
   300 SAVE moles
  -end

#######
#Pyrite
#######
#
# Williamson, M.A. and Rimstidt, J.D., 1994, 
# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454.
#
# Example of KINETICS data block for pyrite rate:
#       KINETICS 1
#       Pyrite  
#               -tol    1e-8
#               -m0     5.e-4
#               -m      5.e-4
#               -parms  2.0     0.67     .5      -0.11 
Pyrite
  -start
   1 rem        Williamson and Rimstidt, 1994
   2 rem        parm(1) = log10(A/V, 1/dm)      parm(2) = exp for (m/m0)
   3 rem        parm(3) = exp for O2            parm(4) = exp for H+
      
   10 if (m <= 0) then goto 200
   20 if (si("Pyrite") >= 0) then goto 200
   20  rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0)
   30  moles = 10^rate * time
   40 if (moles > m) then moles = m
   200 save moles
  -end

##########
#Organic_C
##########
#
# Example of KINETICS data block for Organic_C rate:
#       KINETICS 1
#       Organic_C
#               -tol    1e-8
#              # m in mol/kgw
#               -m0     5e-3
#               -m      5e-3
Organic_C
 -start
   1  rem      Additive Monod kinetics
   2  rem      Electron acceptors: O2, NO3, and SO4

   10 if (m <= 0) then goto 200
   20  mO2 = mol("O2")
   30  mNO3 = tot("N(5)")
   40  mSO4 = tot("S(6)")
   50   rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3)
   60   rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4)
   70  moles = rate * m * (m/m0) * time
   80 if (moles > m) then moles = m
   200 save moles
 -end
END
TITLE SKB-LOT
EXCHANGE_SPECIES
#constantes de Bradbury and Baeyens (2002)
        X- = X-
        log_k        0.0
        X- + Na+ = NaX
        log_k        0.0
        X- + H+ = HX
        log_k       -100.0
        X- = X-
        log_k        0.0
        X- + Na+ = NaX
        log_k        0.0
        2X- + Ca+2 = CaX2
        log_k        0.41
        X- = X-
        log_k        0.0
        X- + Na+ = NaX
        log_k        0.0
        2X- + Mg+2 = MgX2
        log_k        0.34
        X- = X-
        log_k        0.0
        X- + Na+ = NaX
        log_k        0.0
        X- + K+ = KX
        log_k        0.60
SOLUTION 0 Äspö water
        units   mol/kgw
        pH      7.7
        temp    15.0
	pe		-3.3
        Ca		4.73e-2
        C               1.64e-4		
        S		5.83e-3
        Na		9.13e-2
       Cl		1.81e-1
        K		2.05e-4
        Mg		1.73e-3
        Si		1.46e-4
        Fe		4.30e-6
SOLUTION 1 Granite water: Aspo
        units   mol/kgw
        pH      7.7
        temp    15.0
	pe		-3.3
        Ca		4.73e-2
        C               1.64e-4		
        S		5.83e-3
        Na		9.13e-2
       Cl		1.81e-1
        K		2.05e-4
        Mg		1.73e-3
        Si		1.46e-4
        Fe		4.30e-6
SOLUTION 2 Bentonite water:equilibrated MX80-Aspo granite
        units   mol/kgw
        pH      8.40
        temp    15.0
	pe		-4.30
        Ca		15.64e-3
        C               0.18e-3	
        S		19.58e-3
        Na		173.02e-3
       Cl		175.00e-3
        K		0.63e-3
        Mg		3.04e-3
        Si		0.004e-3
        Fe		0.10e-3
SOLUTION 3 Bentonite water:equilibrated MX80-Aspo granite
        units   mol/kgw
        pH      8.51
        temp    15.0
	pe		-4.36
        Ca		19.05e-3
        C               0.16e-3	
        S		62.97e-3
        Na		222.10e-3
       Cl		149.31e-3
        K		0.78e-3
        Mg		5.55e-3
        Si		0.004e-3
        Fe		0.11e-3
SOLUTION 4 Bentonite water:equilibrated MX80-Aspo granite
        units   mol/kgw
        pH      8.74
        temp    15.0
	pe		-4.59
        Ca		16.28e-3
        C               0.13e-3	
        S		76.97e-3
        Na		209.96e-3
       Cl		102.43e-3
        K		0.74e-3
        Mg		5.41e-3
        Si		0.0023e-3
        Fe		0.093e-3
SOLUTION 5 Bentonite water:equilibrated MX80-Aspo granite
        units   mol/kgw
        pH      8.99
        temp    15.0
	pe		-4.84
        Ca		14.56e-3
        C               0.09e-3	
        S		88.54e-3
        Na		190.91e-3
       Cl		54.53e-3
        K		0.69e-3
        Mg		4.92e-3
        Si		0.0011e-3
        Fe		0.085e-3
SOLUTION 6 Bentonite water:equilibrated MX80-Aspo granite
        units   mol/kgw
        pH      9.18
        temp    15.0
	pe		-5.03
        Ca		13.71e-3
        C               0.076e-3	
        S		96.21e-3
        Na		179.94e-3
       Cl		25.16e-3
        K		0.66e-3
        Mg		4.64e-3
        Si		0.00035e-3
        Fe		0.08e-3
SOLUTION 7 Bentonite water:equilibrated MX80-Aspo granite
        units   mol/kgw
        pH      9.26
        temp    15.0
	pe		-5.11
        Ca		13.42e-3
        C               0.07e-3	
        S		99.22e-3
        Na		176.12e-3
       Cl		14.36e-3
        K		0.65e-3
        Mg		4.55e-3
        Si		0.00007e-3
        Fe		0.079e-3
SOLUTION 8 Bentonite water:equilibrated MX80-Aspo granite
        units   mol/kgw
        pH      9.27
        temp    15.0
	pe		-5.12
        Ca		13.36e-3
        C               0.068e-3	
        S		99.85e-3
        Na		175.360e-3
       Cl		12.15e-3
        K		0.65e-3
        Mg		4.53e-3
        Si		0.00002e-3
        Fe		0.079e-3
EQUILIBRIUM_PHASES 1 Granite solid phases
	Gypsum	        0.0	0.0
	Calcite	        0.0	0.0
	Fe(OH)3(a)	0.0	0.0
	Siderite	0.0	0.0
        Goethite         0.0     0.0 
        Pyrite          0.0     13.1  

EQUILIBRIUM_PHASES 2 Bentonite solid phases
	Gypsum	        0.0	0.0
	Calcite	        0.0     0.22988	
	Cristobalite	0.0     8.69
	Siderite	0.0     0.22001	
        Fe(OH)3(a)      0.0     0.0
        pyrite          0.0     0.09

EQUILIBRIUM_PHASES 3 Bentonite solid phases
	Gypsum	        0.0     0.03749	
	Calcite	        0.0     0.23	
	Cristobalite	0.0     8.69	
	Siderite	0.0     0.21993	
        Fe(OH)3(a)      0.0     0.0
        pyrite          0.0     0.09

EQUILIBRIUM_PHASES 4 Bentonite solid phases
	Gypsum	        0.0     0.06371	
	Calcite	        0.0     0.23002	
	Cristobalite	0.0     8.69
	Siderite	0.0     0.21993
        Fe(OH)3(a)      0.0     0.0
        pyrite          0.0     0.09

EQUILIBRIUM_PHASES 5 Bentonite solid phases
	Gypsum	        0.0     0.06548	
	Calcite	        0.0     0.23002	
	Cristobalite	0.0     8.69	
	Siderite	0.0     0.21993	
        Fe(OH)3(a)      0.0     0.0     
        pyrite          0.0     0.09

EQUILIBRIUM_PHASES 6 Bentonite solid phases
	Gypsum	        0.0     0.06536	
	Calcite	        0.0     0.23002	
	Cristobalite	0.0     8.69	
	Siderite	0.0     0.21993	
        Fe(OH)3(a)      0.0     0.0
        pyrite          0.0     0.09

EQUILIBRIUM_PHASES 7 Bentonite solid phases
	Gypsum	        0.0     0.06531	
	Calcite	        0.0     0.23002	
	Cristobalite	0.0     8.69	
	Siderite	0.0     0.21993	
        Fe(OH)3(a)      0.0     0.0
        pyrite          0.0     0.09

EQUILIBRIUM_PHASES 8 Bentonite solid phases
	Gypsum	        0.0     0.06531	
	Calcite	        0.0     0.23002	
	Cristobalite	0.0     8.69	
	Siderite	0.0     0.21993	
        Fe(OH)3(a)      0.0     0.0
        pyrite          0.0     0.09

EXCHANGE 2  Bentonite exchange species
	NaX	1.76220
	KX	0.02748
	CaX2	0.40196
	MgX2	0.06426
EXCHANGE 3  Bentonite exchange species
	NaX	1.97970
	KX	0.02868
	CaX2	0.29064
	MgX2	0.06803
EXCHANGE 4  Bentonite exchange species
	NaX	2.03050
	KX	0.02883
	CaX2	0.26425
	MgX2	0.07016
EXCHANGE 5  Bentonite exchange species
	NaX	2.03470
	KX	0.02884
	CaX2	0.26204
	MgX2	0.07037
EXCHANGE 6  Bentonite exchange species
	NaX	2.03460
	KX	0.02884
	CaX2	0.26210
	MgX2	0.07037
EXCHANGE 7  Bentonite exchange species
	NaX	2.03450
	KX	0.02884
	CaX2	0.26214
	MgX2	0.07036
EXCHANGE 8  Bentonite exchange species
	NaX	2.03450
	KX	0.02884
	CaX2	0.26204
	MgX2	0.07036
REACTION_TEMPERATURE 0-8
15.0

SELECTED_OUTPUT
	-file	Chem.sel
	-totals	Na	Cl	Ca	C	C(4)	Fe      Fe(3)	Si	S	S(6)	K	Mg
	-molalities	NaX	KX	CaX2	MgX2 
	-equilibrium_phases	Gypsum	Calcite	   cristobalite Fe(OH)3(a) Siderite goethite pyrite
	-temperature
        -saturation_indices  Gypsum  Calcite   Cristobalite Fe(OH)3(a)  Siderite Cu(OH)2	Cuprite	Tenorite
			     Malachite	 Chalcocite    anhydrite   pyrite    goethite  dolomite CO2(g)
                       O2(g)
END
	TITLE
	SR_MET reference case
	UNITS
		time				years
		horizontal_grid			mm
		vertical_grid			mm
		head				m
		hydraulic_conductivity		m/s	
		specific_storage		1/m
		dispersivity			m
		flux				m/s
	SOLUTION_METHOD
		direct
		save_directions         5
		space_differencing	0.0
		time_differencing       1.0
	FLOW_ONLY	FALSE
        STEADY_FLOW     FALSE
	GRID
		nonuniform X
		        0       300     600     900     1200    1500    1800    2100    2400    2700    3000    3087.5   
                        3175    3262.5  3350    3437.5  3525    3612.5  3700    3787.5  3875    3962.5  4050    4137.5
                        4225    4312.5  4400    4487.5  4575    4662.5  4750    5050    5350    5650    5950    6250
                        6550    6850    7150    7450    7750    
                nonuniform Y
		        0       87.5    175     262.5   350     437.5   525     612.5   700    787.5    875     1175
                        1475    1775    2075    2375    2675    2975    3275    3575    3875    
		nonuniform Z
                        0       300     600     900     1200    1500    1800    2100    2400    2700    3000    3087.5   
                        3175    3262.5  3350    3437.5  3525    3612.5  3700    3787.5  3875    3962.5  4050    4137.5
                        4225    4312.5  4400    4487.5  4575    4662.5  4750   4837.5   4925   5012.5   5100   5187.5
                        5275   5362.5   5450    5537.5   5625   5712.5  5800   5887.5   5975   6062.5   6150   6237.5 
                        6325    6412.5  6500    6587.5   6675   6762.5   6850   6937.5   7025  7112.5   7200   7287.5
                        7375   7462.5   7550    7637.5   7725   7812.5   7900   7987.5   8075   8162.5   8250   8337.5
                        8425   8512.5   8600    8687.5   8775   8862.5   8950   9037.5   9125   9212.5   9300   9387.5
                        9475   9562.5   9650    9737.5   9825                
 		print_orientation XZ
	#	chemistry_dimensions	XZ
	FLUID_PROPERTIES
		compressibility	0.0                  #  fix compessibility !!!
		diffusivity		5e-10		# m^2/s
	MEDIA
		zone	0	0	0	7750	3875    9825        #granit
			kx		5.77e-9
			ky	     	5.77e-9	             
			kz		5.77e-9		         	
			porosity	0.005	
			storage			0              
			trans_dispersivity	0.015
			long_dispersivity	0.150
			active		1
	        zone	3000	0	3000	4750	875	9825        #bentonite
			kx		1.15e-14
			ky	        1.15e-14     
			kz		1.15e-14	         	
			porosity	0.43
			storage			0              
			trans_dispersivity	0.015
			long_dispersivity	0.150
			active		1

	HEAD_IC
		zone	0	0	0	7750	3875	9825 
			head	500
	SPECIFIED_VALUE_BC
		############# CARGA DE IZQUIERDA #####################
		zone	0	0	0	0	3875	9825  
			head	500.0
			fixed_solution_composition	0
		############# CARGA DE DERECHA #####################
		zone	7750	0	0	7750	3875	9825  
			head	499.9845
       		associated_solution_composition	0
	CHEMISTRY_IC
		zone	0	0	0	7750	3875	9825        #granite
			-solution			1
			-equilibrium_phases	        1		

		zone	3000	0	3000	4750	875	9825        #bentonite1
			-solution			2
			-equilibrium_phases	        2
			-exchange			2

		zone	3087.5	0	3087.5	4662.5	787.5	9825        #bentonite3
			-solution			4
			-equilibrium_phases	        4
			-exchange			4

		zone	3175	0	3175	4575	700	9825        #bentonite5
			-solution			6
			-equilibrium_phases	        6
			-exchange			6

		zone	3262.5	0	3262.5	4487.5	612.5	9825        #bentonite7
			-solution			8
			-equilibrium_phases	        8
			-exchange			8
	PRINT_INPUT
		media_properties			true
		initial_conditions	      true
		boundary_conditions	      true
		fluid_properties		      true
		solution_method		      true
	TIME_CONTROL
                time_step       1  yr
                time_change     10 yr  
	PRINT_FREQUENCY
		velocity		30000 yr
		solver_statistics	30000 yr
		head			30000 yr
		concentrations	30000 yr
		flow_balance	30000 yr
		bc_flow_rates   30000  yr
	END
	TIME_CONTROL
                time_step       10  yr
                time_change     100 yr  
        END
	TIME_CONTROL
                time_step       100  yr
                time_change     1000 yr  
        END
	TIME_CONTROL
                time_step       1000 yr 
                time_change     10000 yr
        END
	TIME_CONTROL
                time_step       1000 yr 
                time_change     30000 yr
        END	
        TIME_CONTROL
                time_step       1000 yr 
                time_change     45000 yr
        END	
        TIME_CONTROL
                time_step       1000 yr 
                time_change     60000 yr
        END


Project Home Page
Complete Water Resources Division Software
USGS Home Page
Water Resources Division Home Page
NRP Home Page
Help Page
USGS Privacy Statement       

Please note that some U.S. Geological Survey (USGS) information accessed through this page may be preliminary in nature and presented prior to final review and approval by the Director of the USGS. This information is provided with the understanding that it is not guaranteed to be correct or complete and conclusions drawn from such information are the sole responsibility of the user.

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. 


The URL of this page is: https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/mail/msg00479.html
Email:dlpark@usgs.gov
Last modified: $Date: 2005-09-13 21:04:21 -0600 (Tue, 13 Sep 2005) $
Visitor number [an error occurred while processing this directive] since Jan 22, 1998.