#Aquesta base de dades ha estat modificada pel projecte SRMET
#No hi ha els coeficients de les eq.virials
#No hi son tots els elements.
#l'Al no esta arreglat
SOLUTION_MASTER_SPECIES
#
#element species alk gfw_formula element_gfw
#
H H+ -1. H 1.008
H(0) H2 0.0 H
H(1) H+ -1. 0.0
E e- 0.0 0.0 0.0
O H2O 0.0 O 16.00
O(0) O2 0.0 O
O(-2) H2O 0.0 0.0
Ca Ca+2 0.0 Ca 40.08
Mg Mg+2 0.0 Mg 24.312
Na Na+ 0.0 Na 22.9898
K K+ 0.0 K 39.102
Fe Fe+2 0.0 Fe 55.847
Fe(+2) Fe+2 0.0 Fe
Fe(+3) Fe+3 -2.0 Fe
Al Al+3 0.0 Al 26.9815
Si H4SiO4 0.0 SiO2 28.0843
Cl Cl- 0.0 Cl 35.453
C CO3-2 2.0 HCO3 12.0111
C(+4) CO3-2 2.0 HCO3
C(-4) CH4 0.0 CH4
Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05
S SO4-2 0.0 SO4 32.064
S(6) SO4-2 0.0 SO4
S(-2) HS- 1.0 S
Cu Cu+2 0.0 Cu 63.546
Cu(+2) Cu+2 0.0 Cu
Cu(+1) Cu+1 0.0 Cu
SOLUTION_SPECIES
H+ = H+
log_k 0.000
# -gamma 9.0000 0.0000
e- = e-
log_k 0.000
H2O = H2O
log_k 0.000
Ca+2 = Ca+2
log_k 0.000
# -gamma 5.0000 0.1650
Mg+2 = Mg+2
log_k 0.000
# -gamma 5.5000 0.2000
Na+ = Na+
log_k 0.000
# -gamma 4.0000 0.0750
K+ = K+
log_k 0.000
# -gamma 3.5000 0.0150
Fe+2 = Fe+2
log_k 0.000
# -gamma 6.0000 0.0000
Al+3 = Al+3
log_k 0.000
# -gamma 9.0000 0.0000
H4SiO4 = H4SiO4
log_k 0.000
Cl- = Cl-
log_k 0.000
# -gamma 3.5000 0.0150
CO3-2 = CO3-2
log_k 0.000
# -gamma 5.4000 0.0000
SO4-2 = SO4-2
log_k 0.000
# -gamma 5.0000 -0.0400
Cu+2 = Cu+2
log_k 0.000
# -gamma 6.0000 0.0000
#
#
#aqueous species
#
#
#
# H and O
#
H2O = OH- + H+
log_k -14.000
delta_h 13.340 kcal
2 H2O = O2 + 4 H+ + 4 e-
log_k -85.9
delta_h 134.79 kcal
#aquesta delta_h no es d'ANDRA
2 H+ + 2 e- = H2
log_k -3.11
delta_h -1.759 kcal
#aquesta delta_h no es d'ANDRA
#
# carbonate
#
CO3-2 + H+ = HCO3-
log_k 10.33
delta_h -14.7 kJ
# -gamma 5.4000 0.0000
CO3-2 + 2 H+ = CO2 + H2O
log_k 16.68
delta_h -23.860 kJ
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
log_k 41.071
delta_h -61.039 kcal
#
# chloride
#
H+ + Cl- = HCl
log_k -0.67
delta_H 0.00 kJ
#
# Sulphur
#
SO4-2 + H+ = HSO4-
log_k 1.98
delta_h 22.44 kJ
# HS- = S-2 + H+
# log_k -12.918
# delta_h 12.1 kcal
#segons Bdades ANDRA es millor l'altra reaccio
SO4-2 + 8H+ + 8e- = S-2 +4 H2O
log_k -19.0
#ANDRA_TDB no hi ha DHr
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
log_k 33.65
delta_h -60.140 kcal
#no s`ha trobat a ANDRA
HS- + H+ = H2S
log_k 6.99
delta_h -22.3 kJ
2 H+ + SO4-2 = H2SO4
log_k -1.0
delta_H 0.0 kJ
#no hi ha valor a ANDRA
SO4-2 + H+ = HSO4-
log_k 1.98
delta_H 22.440 kJ
#
# Calcium
#
Ca+2 + H2O = CaOH+ + H+
log_k -12.7
delta_h 65.035 kJ
Ca+2 + CO3-2 = CaCO3
log_k 3.22
delta_h 14.832 kJ
Ca+2 + CO3-2 + H+ = CaHCO3+
log_k 11.43
delta_h -2.565 kJ
Ca+2 + SO4-2 = CaSO4
log_k 2.31
delta_h 6.904 kJ
Ca+2 + HSO4- = CaHSO4+
log_k 1.08
#no hi es
Ca+2 + Cl- = CaCl+
log_k 0.29
delta_h 8.547 kJ
Ca+2 + 2 Cl- = CaCl2
log_k -0.6436
delta_h -5.8325 kJ
# nohi es .
#
# Magnesium
#
Mg+2 + H2O = MgOH+ + H+
log_k -11.440
delta_h 66.672 kJ
4 Mg+2 + 4 H2O = Mg4(OH)4+4 + 4 H+
log_k -40.30
delta_H 0.0
#a Andra no hi ha dHr
Mg+2 + CO3-2 = MgCO3
log_k 2.88
delta_h 11.350 kJ
Mg+2 + H+ + CO3-2 = MgHCO3+
log_k 11.3
delta_h -11.613 kJ
Mg+2 + SO4-2 = MgSO4
log_k 2.36
delta_h 5.858 kJ
Mg+2 + Cl- = MgCl+
log_k 0.35
delta_H 5.079 kJ
#
# Sodium
#
Na+ + H2O = NaOH + H+
log_k -13.9
delta_h 12.823 kcal
#a ANDRA no hi ha DHr
Na+ + CO3-2 = NaCO3-
log_k 1.270
delta_h 37.279 kJ
Na+ + H+ + CO3-2 = NaHCO3
log_k 10.08
delta_h -15 kJ
Na+ + SO4-2 = NaSO4-
log_k 0.700
delta_h 6.304 kJ
2 H2O + Na+ + Al+3 = NaAlO2 + 4 H+
log_k -23.6266
delta_H 190.326 kJ
#aquesta sp no hi es a aNDRA
Na+ + Cl- = NaCl
log_k 0.04
delta_H -0.110 kJ
#
# Potassium
#
K+ + H2O = KOH + H+
log_k -14.5
delta_h 0.0 kcal
#a ANDRA no hi ha DHr
K+ + SO4-2 = KSO4-
log_k 0.850
delta_h 2.596 kJ
SO4-2 + K+ + H+ = KHSO4
log_k 0.8136
delta_H 29.8319 kJ
#no hi es
K+ + Cl- = KCl
log_k -1.4946
delta_H 14.1963 kJ
# a ANDRA donen log_K =0.0 i DHr=0.07. MOLt estrany, no?
#
# Iron (II)
#
Fe+2 + H2O = FeOH+ + H+
log_k -9.500
delta_h 55.304 kJ
2 H2O + Fe+2 = Fe(OH)2 + 2 H+
log_k -20.6
delta_h 119.662 kJ
3 H2O + Fe+2 = Fe(OH)3- + 3 H+
log_k -31.9
delta_h 138.072 kJ
4 H2O + Fe+2 = Fe(OH)4-2 + 4 H+
log_k -46.0
delta_H 158.797 kJ
Fe+2 + Cl- = FeCl+
log_k 0.14
delta_h -0.078 kJ
2 Cl- + Fe+2 = FeCl2
log_k -2.4541
delta_H 6.46846 kJ
#no hi es a ANDRA
4 Cl- + Fe+2 = FeCl4-2
log_k -1.9
delta_h 0.0 kJ
#no hi es a ANDRA
Fe+2 + CO3-2 = FeCO3
log_k 5.69
delta_h -5.764 kJ
Fe+2 + HCO3- = FeHCO3+
log_k 2.72
delta_h 0.0 kcal
#no hi es a ANDRA
Fe+2 + SO4-2 = FeSO4
log_k 2.2
delta_h 13.514 kJ
Fe+2 + H+ + SO4-2 = FeHSO4+
log_k 3.07
#a ANDRA no hi ha DHR
#
# Iron (II) and Iron (III)
#
Fe+2 = Fe+3 + e-
log_k -13.010
delta_h 41.0 kJ
#
# Iron (III)
#
Fe+3 + H2O = FeOH+2 + H+
log_k -2.19
delta_h 43.514 kJ
Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
log_k -5.67
delta_h 71.546 kJ
Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
log_k -12.56
delta_h 103.764 kJ
Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
log_k -21.6
delta_h 133.471 kJ
2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
log_k -2.95
delta_h 56.484 kJ
3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
log_k -6.3
delta_h 59.831 kJ
Fe+3 + Cl- = FeCl+2
log_k 1.4
delta_h 5.6 kcal
#no hi ha DHR a ANDRA
Fe+3 + 2 Cl- = FeCl2+
log_k 2.1
delta_h 0.0 kcal
#no hi ha DHR a ANDRA
Fe+3 + 3 Cl- = FeCl3
log_k 1.13
#no hi es
4 Cl- + Fe+3 = FeCl4-
log_k -0.79
delta_H 0.0
#no hi es
Fe+3 + SO4-2 = FeSO4+
log_k 4.1
delta_h 16.359 kJ
Fe+3 + HSO4- = FeHSO4+2
log_k 2.48
#no hi es
Fe+3 + 2 SO4-2 = Fe(SO4)2-
log_k 5.40
delta_h 19.248 kJ
CO3-2 + Fe+3 = FeCO3+
log_k 9.72
delta_h -64.906 kJ
#Nohi es
#
# Aluminum
#
Al+3 + H2O = AlOH+2 + H+
log_k -5.00
delta_h 47.214 kJ
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
log_k -10.1
delta_h 112.56 kJ
Al+3 + 3 H2O = Al(OH)3 + 3 H+
log_k -16.95
delta_h 166.9 kJ
Al+3 + 4 H2O = Al(OH)4- + 4 H+
log_k -22.25
delta_h 181.925 kJ
Al+3 + 2H2O = AlO2- + 4 H+
log_k -22.8833
delta_h 180.899 kJ
#no hi es
Al+3 + SO4-2 = AlSO4+
log_k 3.02
delta_h 9.581 kJ
Al+3 + 2SO4-2 = Al(SO4)2-
log_k 4.9
delta_h 12.845 kJ
Al+3 + H+ + SO4-2 = AlHSO4+2
log_k 2.45
#ANDRA no dona DHr
#
# Silicon
#
H4SiO4 = H3SiO4- + H+
log_k -9.93
delta_h 25.6 kJ
H4SiO4 = H2SiO4-2 + 2 H+
log_k -23.14
delta_h 75.0 kJ
#
# Copper (II)
#
Cu+2 + H2O = CuOH+ + H+
log_k -7.2875
delta_h 0.0 kcal
# no hi es
Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
log_k -13.680
#no hi es
Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
log_k -26.900
#no hi es
Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
log_k -39.600
#no hi es
Cu+2 + SO4-2 = CuSO4
log_k 2.310
delta_h 1.220 kcal
#no hi es
2 HCO3- + Cu+2 = Cu(CO3)2-2 + 2 H+
log_k -10.4757
delta_H 0.0 kJ
#no hi es
2 H2O + HCO3- + Cu+2 = CuCO3(OH)2-2 + 3 H+
log_k -23.444
delta_H 0.0 kJ
#no hi es
HCO3- + Cu+2 = CuCO3 + H+
log_k -3.3735
delta_H 0.0 kJ
# no hi es
Cu+2 + Cl- = CuCl+
log_k 0.430
delta_H 36.1916 kJ
#no hi es
2 Cl- + Cu+2 = CuCl2
log_k 0.1585
delta_H 44.183 kJ
# no hi es
4 Cl- + Cu+2 = CuCl4-2
log_k -4.59
delta_H 32.55 kJ
#no hi es
2 H2O + Cu+2 = CuO2-2 + 4 H+
log_k -39.4497
delta_H 0.0 kJ
#no hi es
#
# Copper (II) and Copper (I)
#
Cu+2 + e- = Cu+
log_k 2.720
delta_h 1.650 kcal
#no hi es
#
# Copper (I)
#
2 Cl- + Cu+ = CuCl2-
log_k 4.8212
delta_H 0.0 kJ
#no hi es
3 Cl- + Cu+ = CuCl3-2
log_k 5.6289
delta_H 1.088 kJ
#no hi es
PHASES
Afwillite
Ca3Si2O4(OH)6 + 6 H+ = 2 H4SiO4 + 3 Ca+2 + 2 H2O
log_k 60.0452
delta_h -75.54 kcal
#no hi es a ANDRA
Al(OH)3(a)
Al(OH)3 + 3H+ = Al+3 + 3H2O
log_k 10.38
delta_h -27.045 kcal
#No hi es a ANDRA
Albite
NaAlSi3O8 + 4H+ + 4H2O = Na+ + Al+3 + 3H4SiO4
log_k 2.592
delta_h -17.4 kcal
#No hi es a ANDRA
Alunite
KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O
log_k -1.346
delta_h 3.918 kcal
#No hi es a ANDRA
Anhydrite
CaSO4 = Ca+2 + SO4-2
log_k -4.64
delta_h -15.77 kJ
Anorthite
CaAl2Si2O8 + 8H+ = Ca+2 + 2Al+3 + 2H4SiO4
log_k 25.43
delta_h -70.66 kcal
#No hi es a ANDRA
Aragonite
CaCO3 = Ca+2 + CO3-2
log_k -8.336
delta_h -10.832 kJ
Boehmite
AlOOH + 3H+ = Al+3 + 2H2O
log_k 8.76
delta_h -119.636 kJ
Brucite
Mg(OH)2 + 2H+ = Mg+2 + 2H2O
log_k 16.84
delta_h -113.386 kJ
C3ASH4
Ca3Al2SiO8:4H2O + 12 H+ = 3 Ca+2 + 2 Al+3 + H4SiO4 + 8 H2O
log_k 69.4
delta_h 0
#No hi es a ANDRA
C4AH13
Ca4Al2(OH)14:6H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 20 H2O
log_k 107.2537
delta_h 0
#No hi es a ANDRA
Ca-Hemicarboaluminate
Ca8Al4(CO3)(OH)26:9H2O + 26 H+ = 8 Ca+2 + 4 Al+3 + CO3-2 + 35 H2O
log_k -172.0
delta_h 0
#No hi es a ANDRA
Ca-Monocarboaluminate
Ca4Al2(CO3)(OH)12:4H2O + 12 H+ = 4 Ca+2 + 2 Al+3 + CO3-2 + 16 H2O
log_k -70.0
delta_h 0
#No hi es a ANDRA
Ca-Monosulfoaluminate
Ca4Al2(SO4)(OH)12:6H2O + 12 H+ = 4 Ca+2 + 2 Al+3 + SO4-2 + 18 H2O
log_k 71.0
delta_h 0
#No hi es a ANDRA
Calcite
CaCO3 = Ca+2 + CO3-2
log_k -8.48
delta_h -9.61 kJ
Chalcanthite
CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O
log_k -2.64
delta_h 1.44 kcal
#No hi es a ANDRA
Chalcedony
SiO2 + 2H2O = H4SiO4
log_k -3.523
delta_h 4.615 kcal
#la reaccio a TC esta malament.
Chalcocite
Cu2S + H+ = 2Cu+ + HS-
log_k -34.619
delta_h 49.35 kcal
#No hi es a ANDRA
Chlorite(14A)
Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O
log_k 68.38
delta_h -151.494 kcal
#No hi es a ANDRA
Covellite
CuS + H+ = Cu+2 + HS-
log_k -23.038
delta_h 24.01 kcal
#No hi es a ANDRA
Cristobalite
SiO2 + 2H2O = H4SiO4
log_k -3.587
delta_h 5.5 kcal
#No hi es a ANDRA
CuMetal
Cu = Cu+ + e-
log_k -8.76
delta_h 17.13 kcal
#No hi es a ANDRA
Cu(OH)2
Cu(OH)2 + 2H+ = Cu+2 + 2H2O
log_k 8.64
delta_h -15.25 kcal
#No hi es a ANDRA
Cuprite
Cu2O + 2H+ = 2Cu+ + H2O
log_k -1.55
delta_h 6.245 kcal
#No hi es a ANDRA
Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
log_k -17.090
delta_h -39.497 kJ
Ettringite
Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O
log_k 62.5362
delta_h -91.408 kcal
#No hi es a ANDRA
Fe(OH)3(a)
Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
log_k 5.6556
delta_h -20.096 kcal
#no l'he tocat
#Fe(OH)3(a)
# Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
# log_k 4.89
#Aixo es el que hi ha a ANDRA
FeS(ppt)
FeS + H+ = Fe+2 + HS-
log_k -3.92
delta_h -0 kcal
# a aNDRA no hi ha DHR
Gibbsite
Al(OH)3 + 3H+ = Al+3 + 3H2O
log_k 8.38
delta_h -102.556 kJ
Goethite
FeOOH + 3H+ = Fe+3 + 2H2O
log_k -0.27
delta_h -57.76 kJ
Gypsum
CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O
log_k -4.848
delta_h 1.09 kJ
#A ANDRA son 1500kJ.
Halite
NaCl = Na+ + Cl-
log_k 1.57
delta_h 0.918 kcal
# a ANDRA no hi ha DHr
Hematite
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
log_k -4.008
delta_h -129.26 kJ
Hematite_ANDRA
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
log_k -0.05
delta_h -129.26 kJ
Hydrogarnet
Ca3Al2(OH)12 + 12 H+ = 3 Ca+2 + 2 Al+3 + 12 H2O
log_k 78.0
delta_h 0
# no hi es a ANDRA
Hydrogehlenite
Ca2Al2SiO7:5H2O + 10 H+ = 2 Ca+2 + 2 Al+3 + H4SiO4 + 8 H2O
log_k 49.5
delta_h 0
# no hi es a ANDRA
Illite
K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+
log_k -40.267
delta_h 54.684 kcal
# no hi es a ANDRA
Jarosite-K
KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O
log_k -14.8
delta_h -31.28 kcal
# no hi es a ANDRA
Jennite
Ca9H2Si6O18(OH)8:6H2O + 18 H+ = 9 Ca+2 + 6 H4SiO4 + 8 H2O
log_k 150.0
delta_h 0
# no hi es a ANDRA
K-feldspar
KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
log_k -20.573
delta_h 30.820 kcal
# no hi es a ANDRA
K-mica
KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
log_k 12.703
delta_h -59.376 kcal
# no hi es a ANDRA
Kaolinite
Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O
log_k 5.726
delta_h -35.28 kcal
Kaolinite_ANDRA
Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O
log_k -39.97
delta_h -6.77 kJ
Katoite
Ca3Al2(OH)12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 12 H2O
log_k 78.9437
delta_h 0
#No hi es a ANDRA
Mackinawite
FeS + H+ = Fe+2 + HS-
log_k -4.65
delta_h -0 kcal
#no hi ha DHr a ANDRA
Magnesite
MgCO3 = Mg+2 + CO3-2
log_k -8.2
delta_h -6.169 kcal
#A Andra no hi ha DHR
Magnetite
Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O
log_k 3.737
delta_h -50.46 kcal
Magnetite_ANDRA
Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O
log_k 10.15
delta_h -215.772 kJ
Malachite
Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2
log_k -5.18
delta_h -15.61 kcal
# no hi es a ANDRA
Melanterite
FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O
log_k -2.47
delta_h 2.86 kcal
#
Montmor-Ca
Ca.165Mg.33Al1.67Si4O10(OH)2 + 6 H+ + 4 H2O = 0.165 Ca+2 + 0.33 Mg+2 + 1.67 Al+3 + 4 H4SiO4
log_k 2.4952
delta_h -23.937 kcal
Montmor-Mg
Mg.495Al1.67Si4O10(OH)2 + 6 H+ + 4 H2O = 0.495 Mg+2 + 1.67 Al+3 + 4 H4SiO4
log_k 2.3879
delta_h -24.524 kcal
Montmor-Na
Na.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ + 4 H2O = 0.33 Mg+2 + 0.33 Na+ + 1.67 Al+3 + 4 H4SiO4
log_k 2.4844
delta_h -22.279 kcal
Portlandite
Ca(OH)2 + 2H+ = Ca+2 + 2H2O
log_k 22.8
delta_h -73.94 kJ
Pyrite
FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS-
log_k -24.6534
delta_h 73.8106 kcal
#Pyrite
# FeS2 + 14Fe+3 + 8H2O = 16 H+ + 2SO4-2 + 15 Fe+2
# log_k 98.7391
# delta_h 43.5356 kcal
Pyrite_ANDRA
FeS2 + 2 H+ + 2 e- = Fe+2 + 2HS-
log_k -15.79
delta_h 45.05 kJ
Quartz
SiO2 + 2H2O = H4SiO4
log_k -4.00
delta_h 25.4 kJ
Sepiolite
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
log_k 15.760
delta_h -10.700 kcal
Siderite
FeCO3 = Fe+2 + CO3-2
log_k -10.8
delta_h -5.328 kcal
SiO2(a)
SiO2 + 2H2O = H4SiO4
log_k -3.018
delta_h 4.44 kcal
SiO2(am)
SiO2 + 2H2O = H4SiO4
log_k -2.71
delta_h 3.91 kcal
Sulfur
S + H+ + 2e- = HS-
log_k -2.11
delta_h -4.2 kcal
Sylvite
KCl = Cl- + K+
log_k 0.84
delta_h 17.464 kJ
Talc
Mg3Si4O10(OH)2 + 4H2O + 6H+ = 3Mg+2 + 4H4SiO4
log_k 23.055
delta_h -35.005 kcal
Tenorite
CuO + 2H+ = Cu+2 + H2O
log_k 7.62
delta_h -15.24 kcal
Tobermorite
Ca5Si6O16(OH)2:4H2O + 2 H2O + 10 H+ = 5 Ca+2 + 6 H4SiO4
log_k 65.6121
delta_h -68.561 kcal
CH4(g)
CH4 = CH4
log_k -2.860
delta_h -3.373 kcal
CO2(g)
CO2 = CO2
log_k -1.468
delta_h -4.776 kcal
H2(g)
H2 = H2
log_k -3.150
delta_h -1.759 kcal
H2O(g)
H2O = H2O
log_k 1.51
delta_h -44.03 kJ
# Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978)
H2S(g)
H2S = H2S
log_k -0.997
delta_h -4.570 kcal
O2(g)
O2 = O2
log_k -2.960
delta_h -1.844 kcal
EXCHANGE_MASTER_SPECIES
X X-
EXCHANGE_SPECIES
X- = X-
log_k 0.0
Na+ + X- = NaX
log_k 0.0
-gamma 4.0 0.075
K+ + X- = KX
log_k 0.7
-gamma 3.5 0.015
delta_h -4.3 # Jardine & Sparks, 1984
Ca+2 + 2X- = CaX2
log_k 0.8
-gamma 5.0 0.165
delta_h 7.2 # Van Bladel & Gheyl, 1980
Mg+2 + 2X- = MgX2
log_k 0.6
-gamma 5.5 0.2
delta_h 7.4 # Laudelout et al., 1968
SURFACE_MASTER_SPECIES
Hfo_s Hfo_sOH
Hfo_w Hfo_wOH
SURFACE_SPECIES
# All surface data from
# Dzombak and Morel, 1990
#
#
# Acid-base data from table 5.7
#
# strong binding site--Hfo_s,
Hfo_sOH = Hfo_sOH
log_k 0.0
Hfo_sOH + H+ = Hfo_sOH2+
log_k 7.29 # = pKa1,int
Hfo_sOH = Hfo_sO- + H+
log_k -8.93 # = -pKa2,int
# weak binding site--Hfo_w
Hfo_wOH = Hfo_wOH
log_k 0.0
Hfo_wOH + H+ = Hfo_wOH2+
log_k 7.29 # = pKa1,int
Hfo_wOH = Hfo_wO- + H+
log_k -8.93 # = -pKa2,int
###############################################
# CATIONS #
###############################################
#
# Cations from table 10.1 or 10.5
#
# Calcium
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
log_k 4.97
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
log_k -5.85
#
# Cations from table 10.2
#
# Copper
Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
log_k 2.89
Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
log_k 0.6 # table 10.5
#
# Derived constants table 10.5
#
# Magnesium
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
log_k -4.6
# Iron
# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
# log_k 0.7 # LFER using table 10.5
# Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
# log_k -2.5 # LFER using table 10.5
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm.
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
log_k -0.95
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
log_k -2.98
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
log_k -11.55
###############################################
# ANIONS #
###############################################
#
# Anions from table 10.8
#
# Sulfate
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
log_k 7.78
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
log_k 0.79
#
# Carbonate: Van Geen et al., 1994 reoptimized for HFO
# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L
#
# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
# log_k 12.56
#
# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
# log_k 20.62
# 9/19/96
# Added analytical expression for H2S, NH3, KSO4.
# Added species CaHSO4+.
# Added delta H for Goethite.
RATES
###########
#K-feldspar
###########
#
# Sverdrup, H.U., 1990, The kinetics of base cation release due to
# chemical weathering: Lund University Press, Lund, 246 p.
#
# Example of KINETICS data block for K-feldspar rate:
# KINETICS 1
# K-feldspar
# -m0 2.16 # 10% K-fsp, 0.1 mm cubes
# -m 1.94
# -parms 1.36e4 0.1
K-feldspar
-start
1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
3 rem parm(2) = corrects for field rate relative to lab rate
4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
10 dif_temp = 1/TK - 1/298
20 pk_H = 12.5 + 3134 * dif_temp
30 pk_w = 15.3 + 1838 * dif_temp
40 pk_OH = 14.2 + 3134 * dif_temp
50 pk_CO2 = 14.6 + 1677 * dif_temp
#60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC
70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6
#72 rate = rate + 10^-pk_org * TOT("Doc")^0.4
80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time
81 rem decrease rate on precipitation
90 if SR("K-feldspar") > 1 then moles = moles * 0.1
100 save moles
-end
###########
#Albite
###########
#
# Sverdrup, H.U., 1990, The kinetics of base cation release due to
# chemical weathering: Lund University Press, Lund, 246 p.
#
# Example of KINETICS data block for Albite rate:
# KINETICS 1
# Albite
# -m0 0.43 # 2% Albite, 0.1 mm cubes
# -parms 2.72e3 0.1
Albite
-start
1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
3 rem parm(2) = corrects for field rate relative to lab rate
4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
10 dif_temp = 1/TK - 1/298
20 pk_H = 12.5 + 3359 * dif_temp
30 pk_w = 14.8 + 2648 * dif_temp
40 pk_OH = 13.7 + 3359 * dif_temp
#41 rem ^12.9 in Sverdrup, but larger than for oligoclase...
50 pk_CO2 = 14.0 + 1677 * dif_temp
#60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC
70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6
#72 rate = rate + 10^-pk_org * TOT("Doc")^0.4
80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time
81 rem decrease rate on precipitation
90 if SR("Albite") > 1 then moles = moles * 0.1
100 save moles
-end
########
#Calcite
########
#
# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978,
# American Journal of Science, v. 278, p. 179-216.
#
# Example of KINETICS data block for calcite rate:
#
# KINETICS 1
# Calcite
# -tol 1e-8
# -m0 3.e-3
# -m 3.e-3
# -parms 5.0 0.6
Calcite
-start
1 REM Modified from Plummer and others, 1978
2 REM M = current moles of calcite
3 REM M0 = initial moles of calcite
4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell)
5 REM parm(2) = exponent for M/M0 for surface area correction
10 REM rate = 0 if no calcite and undersaturated
20 si_cc = SI("Calcite")
30 if (M <= 0 and si_cc < 0) then goto 300
40 k1 = 10^(0.198 - 444.0 / TK )
50 k2 = 10^(2.84 - 2177.0 / TK )
60 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK )
70 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK )
80 REM surface area calculation
90 t = 1
100 if M0 > 0 then t = M/M0
110 if t = 0 then t = 1
120 area = PARM(1) * (t)^PARM(2)
130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")
140 REM 1e-3 converts mmol to mol
150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc))
160 moles = rate * TIME
170 REM do not dissolve more calcite than present
180 if (moles > M) then moles = M
190 if (moles >= 0) then goto 300
200 REM do not precipitate more Ca or C(4) than present
210 temp = TOT("Ca")
220 mc = TOT("C(4)")
230 if mc < temp then temp = mc
240 if -moles > temp then moles = -temp
300 SAVE moles
-end
#######
#Pyrite
#######
#
# Williamson, M.A. and Rimstidt, J.D., 1994,
# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454.
#
# Example of KINETICS data block for pyrite rate:
# KINETICS 1
# Pyrite
# -tol 1e-8
# -m0 5.e-4
# -m 5.e-4
# -parms 2.0 0.67 .5 -0.11
Pyrite
-start
1 rem Williamson and Rimstidt, 1994
2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0)
3 rem parm(3) = exp for O2 parm(4) = exp for H+
10 if (m <= 0) then goto 200
20 if (si("Pyrite") >= 0) then goto 200
20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0)
30 moles = 10^rate * time
40 if (moles > m) then moles = m
200 save moles
-end
##########
#Organic_C
##########
#
# Example of KINETICS data block for Organic_C rate:
# KINETICS 1
# Organic_C
# -tol 1e-8
# # m in mol/kgw
# -m0 5e-3
# -m 5e-3
Organic_C
-start
1 rem Additive Monod kinetics
2 rem Electron acceptors: O2, NO3, and SO4
10 if (m <= 0) then goto 200
20 mO2 = mol("O2")
30 mNO3 = tot("N(5)")
40 mSO4 = tot("S(6)")
50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3)
60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4)
70 moles = rate * m * (m/m0) * time
80 if (moles > m) then moles = m
200 save moles
-end
END
TITLE SKB-LOT
EXCHANGE_SPECIES
#constantes de Bradbury and Baeyens (2002)
X- = X-
log_k 0.0
X- + Na+ = NaX
log_k 0.0
X- + H+ = HX
log_k -100.0
X- = X-
log_k 0.0
X- + Na+ = NaX
log_k 0.0
2X- + Ca+2 = CaX2
log_k 0.41
X- = X-
log_k 0.0
X- + Na+ = NaX
log_k 0.0
2X- + Mg+2 = MgX2
log_k 0.34
X- = X-
log_k 0.0
X- + Na+ = NaX
log_k 0.0
X- + K+ = KX
log_k 0.60
SOLUTION 0 Äspö water
units mol/kgw
pH 7.7
temp 15.0
pe -3.3
Ca 4.73e-2
C 1.64e-4
S 5.83e-3
Na 9.13e-2
Cl 1.81e-1
K 2.05e-4
Mg 1.73e-3
Si 1.46e-4
Fe 4.30e-6
SOLUTION 1 Granite water: Aspo
units mol/kgw
pH 7.7
temp 15.0
pe -3.3
Ca 4.73e-2
C 1.64e-4
S 5.83e-3
Na 9.13e-2
Cl 1.81e-1
K 2.05e-4
Mg 1.73e-3
Si 1.46e-4
Fe 4.30e-6
SOLUTION 2 Bentonite water:equilibrated MX80-Aspo granite
units mol/kgw
pH 8.40
temp 15.0
pe -4.30
Ca 15.64e-3
C 0.18e-3
S 19.58e-3
Na 173.02e-3
Cl 175.00e-3
K 0.63e-3
Mg 3.04e-3
Si 0.004e-3
Fe 0.10e-3
SOLUTION 3 Bentonite water:equilibrated MX80-Aspo granite
units mol/kgw
pH 8.51
temp 15.0
pe -4.36
Ca 19.05e-3
C 0.16e-3
S 62.97e-3
Na 222.10e-3
Cl 149.31e-3
K 0.78e-3
Mg 5.55e-3
Si 0.004e-3
Fe 0.11e-3
SOLUTION 4 Bentonite water:equilibrated MX80-Aspo granite
units mol/kgw
pH 8.74
temp 15.0
pe -4.59
Ca 16.28e-3
C 0.13e-3
S 76.97e-3
Na 209.96e-3
Cl 102.43e-3
K 0.74e-3
Mg 5.41e-3
Si 0.0023e-3
Fe 0.093e-3
SOLUTION 5 Bentonite water:equilibrated MX80-Aspo granite
units mol/kgw
pH 8.99
temp 15.0
pe -4.84
Ca 14.56e-3
C 0.09e-3
S 88.54e-3
Na 190.91e-3
Cl 54.53e-3
K 0.69e-3
Mg 4.92e-3
Si 0.0011e-3
Fe 0.085e-3
SOLUTION 6 Bentonite water:equilibrated MX80-Aspo granite
units mol/kgw
pH 9.18
temp 15.0
pe -5.03
Ca 13.71e-3
C 0.076e-3
S 96.21e-3
Na 179.94e-3
Cl 25.16e-3
K 0.66e-3
Mg 4.64e-3
Si 0.00035e-3
Fe 0.08e-3
SOLUTION 7 Bentonite water:equilibrated MX80-Aspo granite
units mol/kgw
pH 9.26
temp 15.0
pe -5.11
Ca 13.42e-3
C 0.07e-3
S 99.22e-3
Na 176.12e-3
Cl 14.36e-3
K 0.65e-3
Mg 4.55e-3
Si 0.00007e-3
Fe 0.079e-3
SOLUTION 8 Bentonite water:equilibrated MX80-Aspo granite
units mol/kgw
pH 9.27
temp 15.0
pe -5.12
Ca 13.36e-3
C 0.068e-3
S 99.85e-3
Na 175.360e-3
Cl 12.15e-3
K 0.65e-3
Mg 4.53e-3
Si 0.00002e-3
Fe 0.079e-3
EQUILIBRIUM_PHASES 1 Granite solid phases
Gypsum 0.0 0.0
Calcite 0.0 0.0
Fe(OH)3(a) 0.0 0.0
Siderite 0.0 0.0
Goethite 0.0 0.0
Pyrite 0.0 13.1
EQUILIBRIUM_PHASES 2 Bentonite solid phases
Gypsum 0.0 0.0
Calcite 0.0 0.22988
Cristobalite 0.0 8.69
Siderite 0.0 0.22001
Fe(OH)3(a) 0.0 0.0
pyrite 0.0 0.09
EQUILIBRIUM_PHASES 3 Bentonite solid phases
Gypsum 0.0 0.03749
Calcite 0.0 0.23
Cristobalite 0.0 8.69
Siderite 0.0 0.21993
Fe(OH)3(a) 0.0 0.0
pyrite 0.0 0.09
EQUILIBRIUM_PHASES 4 Bentonite solid phases
Gypsum 0.0 0.06371
Calcite 0.0 0.23002
Cristobalite 0.0 8.69
Siderite 0.0 0.21993
Fe(OH)3(a) 0.0 0.0
pyrite 0.0 0.09
EQUILIBRIUM_PHASES 5 Bentonite solid phases
Gypsum 0.0 0.06548
Calcite 0.0 0.23002
Cristobalite 0.0 8.69
Siderite 0.0 0.21993
Fe(OH)3(a) 0.0 0.0
pyrite 0.0 0.09
EQUILIBRIUM_PHASES 6 Bentonite solid phases
Gypsum 0.0 0.06536
Calcite 0.0 0.23002
Cristobalite 0.0 8.69
Siderite 0.0 0.21993
Fe(OH)3(a) 0.0 0.0
pyrite 0.0 0.09
EQUILIBRIUM_PHASES 7 Bentonite solid phases
Gypsum 0.0 0.06531
Calcite 0.0 0.23002
Cristobalite 0.0 8.69
Siderite 0.0 0.21993
Fe(OH)3(a) 0.0 0.0
pyrite 0.0 0.09
EQUILIBRIUM_PHASES 8 Bentonite solid phases
Gypsum 0.0 0.06531
Calcite 0.0 0.23002
Cristobalite 0.0 8.69
Siderite 0.0 0.21993
Fe(OH)3(a) 0.0 0.0
pyrite 0.0 0.09
EXCHANGE 2 Bentonite exchange species
NaX 1.76220
KX 0.02748
CaX2 0.40196
MgX2 0.06426
EXCHANGE 3 Bentonite exchange species
NaX 1.97970
KX 0.02868
CaX2 0.29064
MgX2 0.06803
EXCHANGE 4 Bentonite exchange species
NaX 2.03050
KX 0.02883
CaX2 0.26425
MgX2 0.07016
EXCHANGE 5 Bentonite exchange species
NaX 2.03470
KX 0.02884
CaX2 0.26204
MgX2 0.07037
EXCHANGE 6 Bentonite exchange species
NaX 2.03460
KX 0.02884
CaX2 0.26210
MgX2 0.07037
EXCHANGE 7 Bentonite exchange species
NaX 2.03450
KX 0.02884
CaX2 0.26214
MgX2 0.07036
EXCHANGE 8 Bentonite exchange species
NaX 2.03450
KX 0.02884
CaX2 0.26204
MgX2 0.07036
REACTION_TEMPERATURE 0-8
15.0
SELECTED_OUTPUT
-file Chem.sel
-totals Na Cl Ca C C(4) Fe Fe(3) Si S S(6) K Mg
-molalities NaX KX CaX2 MgX2
-equilibrium_phases Gypsum Calcite cristobalite Fe(OH)3(a) Siderite goethite pyrite
-temperature
-saturation_indices Gypsum Calcite Cristobalite Fe(OH)3(a) Siderite Cu(OH)2 Cuprite Tenorite
Malachite Chalcocite anhydrite pyrite goethite dolomite CO2(g)
O2(g)
END
TITLE
SR_MET reference case
UNITS
time years
horizontal_grid mm
vertical_grid mm
head m
hydraulic_conductivity m/s
specific_storage 1/m
dispersivity m
flux m/s
SOLUTION_METHOD
direct
save_directions 5
space_differencing 0.0
time_differencing 1.0
FLOW_ONLY FALSE
STEADY_FLOW FALSE
GRID
nonuniform X
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3087.5
3175 3262.5 3350 3437.5 3525 3612.5 3700 3787.5 3875 3962.5 4050 4137.5
4225 4312.5 4400 4487.5 4575 4662.5 4750 5050 5350 5650 5950 6250
6550 6850 7150 7450 7750
nonuniform Y
0 87.5 175 262.5 350 437.5 525 612.5 700 787.5 875 1175
1475 1775 2075 2375 2675 2975 3275 3575 3875
nonuniform Z
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3087.5
3175 3262.5 3350 3437.5 3525 3612.5 3700 3787.5 3875 3962.5 4050 4137.5
4225 4312.5 4400 4487.5 4575 4662.5 4750 4837.5 4925 5012.5 5100 5187.5
5275 5362.5 5450 5537.5 5625 5712.5 5800 5887.5 5975 6062.5 6150 6237.5
6325 6412.5 6500 6587.5 6675 6762.5 6850 6937.5 7025 7112.5 7200 7287.5
7375 7462.5 7550 7637.5 7725 7812.5 7900 7987.5 8075 8162.5 8250 8337.5
8425 8512.5 8600 8687.5 8775 8862.5 8950 9037.5 9125 9212.5 9300 9387.5
9475 9562.5 9650 9737.5 9825
print_orientation XZ
# chemistry_dimensions XZ
FLUID_PROPERTIES
compressibility 0.0 # fix compessibility !!!
diffusivity 5e-10 # m^2/s
MEDIA
zone 0 0 0 7750 3875 9825 #granit
kx 5.77e-9
ky 5.77e-9
kz 5.77e-9
porosity 0.005
storage 0
trans_dispersivity 0.015
long_dispersivity 0.150
active 1
zone 3000 0 3000 4750 875 9825 #bentonite
kx 1.15e-14
ky 1.15e-14
kz 1.15e-14
porosity 0.43
storage 0
trans_dispersivity 0.015
long_dispersivity 0.150
active 1
HEAD_IC
zone 0 0 0 7750 3875 9825
head 500
SPECIFIED_VALUE_BC
############# CARGA DE IZQUIERDA #####################
zone 0 0 0 0 3875 9825
head 500.0
fixed_solution_composition 0
############# CARGA DE DERECHA #####################
zone 7750 0 0 7750 3875 9825
head 499.9845
associated_solution_composition 0
CHEMISTRY_IC
zone 0 0 0 7750 3875 9825 #granite
-solution 1
-equilibrium_phases 1
zone 3000 0 3000 4750 875 9825 #bentonite1
-solution 2
-equilibrium_phases 2
-exchange 2
zone 3087.5 0 3087.5 4662.5 787.5 9825 #bentonite3
-solution 4
-equilibrium_phases 4
-exchange 4
zone 3175 0 3175 4575 700 9825 #bentonite5
-solution 6
-equilibrium_phases 6
-exchange 6
zone 3262.5 0 3262.5 4487.5 612.5 9825 #bentonite7
-solution 8
-equilibrium_phases 8
-exchange 8
PRINT_INPUT
media_properties true
initial_conditions true
boundary_conditions true
fluid_properties true
solution_method true
TIME_CONTROL
time_step 1 yr
time_change 10 yr
PRINT_FREQUENCY
velocity 30000 yr
solver_statistics 30000 yr
head 30000 yr
concentrations 30000 yr
flow_balance 30000 yr
bc_flow_rates 30000 yr
END
TIME_CONTROL
time_step 10 yr
time_change 100 yr
END
TIME_CONTROL
time_step 100 yr
time_change 1000 yr
END
TIME_CONTROL
time_step 1000 yr
time_change 10000 yr
END
TIME_CONTROL
time_step 1000 yr
time_change 30000 yr
END
TIME_CONTROL
time_step 1000 yr
time_change 45000 yr
END
TIME_CONTROL
time_step 1000 yr
time_change 60000 yr
END
Please note that some U.S. Geological Survey (USGS) information accessed through this page may be preliminary in nature and presented prior to final review and approval by the Director of the USGS. This information is provided with the understanding that it is not guaranteed to be correct or complete and conclusions drawn from such information are the sole responsibility of the user.
Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.
The URL of this page is:
https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/mail/msg00479.html
Email:dlpark@usgs.gov
Last modified: $Date: 2005-09-13 21:04:21 -0600 (Tue, 13 Sep 2005) $
Visitor number [an error occurred while processing this directive] since Jan 22, 1998.