Three database files are distributed with the program: phreeqc.dat , wateq4f.dat , and minteq.dat . Each of these database files contains SOLUTION_MASTER_SPECIES, SOLUTION_SPECIES, PHASES, SURFACE_MASTER_SPECIES, and SURFACE_SPECIES data blocks. Phreeqc.dat and wateq4f.dat also have EXCHANGE_MASTER_SPECIES, EXCHANGE_SPECIES and RATES data blocks.
The file named phreeqc.dat contains the thermodynamic data for aqueous species and gas and mineral phases that are essentially the same as those found in the latest release of the program PHREEQE (Parkhurst and others, 1980). Only minor modifications have been made to make the data consistent with the tabulations in Nordstrom and others (1990) and WATEQ4F (Ball and Nordstrom, 1991). The database file contains data for the following elements: aluminum, barium, boron, bromide, cadmium, calcium, carbon, chloride, copper, fluoride, hydrogen, iron, lead, lithium, magnesium, manganese, nitrogen, oxygen, phosphorous, potassium, silica, sodium, strontium, sulfur, and zinc. The thermodynamic data for cation exchange are taken from Appelo and Postma (1993, p. 160) and converted to log K , accounting for valence of the exchanging species. The thermodynamic data for surface species are taken from Dzombak and Morel (1990); acid base surface reactions are taken from table 5.7 and other cation and anion reactions are taken from tables in chapter 10. Preliminary rate expressions for K-feldspar (Sverdrup, 1990), albite (Sverdrup, 1990), calcite (modified from Plummer and others, 1978), pyrite (Williamson and Rimstidt, 1994), organic carbon ("Organic_c") (additive Monod kinetics for oxygen, nitrate, and sulfate), and pyrolusite (Postma, D. and Appelo, C.A.J., 2000, Geochim. Cosmochim. Acta , in press ) are included from various sources. Examples of KINETICS data block for each of these expressions are included in the definitions in the RATES data block in phreeqc.dat .
The file named wateq4f.dat contains thermodynamic data for the aqueous species and gas and mineral phases that are essentially the same as WATEQ4F (Ball and Nordstrom, 1991). In addition to data for the elements in the database file, phreeqc.dat , the database file wateq4f.dat contains data for the elements: arsenic, cesium, iodine, nickel, rubidium, selenium, silver, and uranium. The WATEQ4F-derived database file also includes complexation constants for two generalized organic ligands, fulvate and humate. Some additional gases are included; some carbonate reactions retain the chemical equations used in PHREEQE. Cation exchange data from Appelo and Postma (1993) as well as surface complexation reactions from Dzombak and Morel (1990) have been included. The rate expressions in phreeqc.dat are also included in wateq4f.dat .
The file named minteq.dat contains thermodynamic data for the aqueous species and gas and mineral phases that are derived from the database files of MINTEQA2 (Allison and others, 1990). The database file contains data for the following elements: aluminum, barium, boron, bromide, cadmium, calcium, carbon, chloride, copper, fluoride, hydrogen, iron, lead, lithium, magnesium, manganese, nitrogen, oxygen, phosphorous, potassium, silica, sodium, strontium, sulfur, and zinc. It also has data for the following organic ligands: benzoate, p-acetate, isophthalate, diethylamine, n-butylamine, methylamine, dimethylamine, tributylphosphate, hexylamine, ethylenediamine, n-propylamine, isopropylamine, trimethylamine, citrate, NTA, EDTA, propanoate, butanoate, isobutyrate, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, formate, isovalerate, valerate, acetate, tartrate, glycine, salicylate, glutamate, and phthalate.
A listing of the file, phreeqc.dat follows. In the interest of space, the other files are not included in this attachment, but are included with the program distribution.
Table 55. --Attachment B. phreeqc.dat: Database file derived from PHREEQE
SOLUTION_MASTER_SPECIES
#
#element species alk gfw_formula element_gfw
#
H H+ -1. H 1.008
H(0) H2 0.0 H
H(1) H+ -1. 0.0
E e- 0.0 0.0 0.0
O H2O 0.0 O 16.00
O(0) O2 0.0 O
O(-2) H2O 0.0 0.0
Ca Ca+2 0.0 Ca 40.08
Mg Mg+2 0.0 Mg 24.312
Na Na+ 0.0 Na 22.9898
K K+ 0.0 K 39.102
Fe Fe+2 0.0 Fe 55.847
Fe(+2) Fe+2 0.0 Fe
Fe(+3) Fe+3 -2.0 Fe
Mn Mn+2 0.0 Mn 54.938
Mn(+2) Mn+2 0.0 Mn
Mn(+3) Mn+3 0.0 Mn
Al Al+3 0.0 Al 26.9815
Ba Ba+2 0.0 Ba 137.34
Sr Sr+2 0.0 Sr 87.62
Si H4SiO4 0.0 SiO2 28.0843
Cl Cl- 0.0 Cl 35.453
C CO3-2 2.0 HCO3 12.0111
C(+4) CO3-2 2.0 HCO3
C(-4) CH4 0.0 CH4
Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05
S SO4-2 0.0 SO4 32.064
S(6) SO4-2 0.0 SO4
S(-2) HS- 1.0 S
N NO3- 0.0 N 14.0067
N(+5) NO3- 0.0 N
N(+3) NO2- 0.0 N
N(0) N2 0.0 N
N(-3) NH4+ 0.0 N
B H3BO3 0.0 B 10.81
P PO4-3 2.0 P 30.9738
F F- 0.0 F 18.9984
Li Li+ 0.0 Li 6.939
Br Br- 0.0 Br 79.904
Zn Zn+2 0.0 Zn 65.37
Cd Cd+2 0.0 Cd 112.4
Pb Pb+2 0.0 Pb 207.19
Cu Cu+2 0.0 Cu 63.546
Cu(+2) Cu+2 0.0 Cu
Cu(+1) Cu+1 0.0 Cu
SOLUTION_SPECIES
H+ = H+
log_k 0.000
-gamma 9.0000 0.0000
e- = e-
log_k 0.000
H2O = H2O
log_k 0.000
Ca+2 = Ca+2
log_k 0.000
-gamma 5.0000 0.1650
Mg+2 = Mg+2
log_k 0.000
-gamma 5.5000 0.2000
Na+ = Na+
log_k 0.000
-gamma 4.0000 0.0750
K+ = K+
log_k 0.000
-gamma 3.5000 0.0150
Fe+2 = Fe+2
log_k 0.000
-gamma 6.0000 0.0000
Mn+2 = Mn+2
log_k 0.000
-gamma 6.0000 0.0000
Al+3 = Al+3
log_k 0.000
-gamma 9.0000 0.0000
Ba+2 = Ba+2
log_k 0.000
-gamma 5.0000 0.0000
Sr+2 = Sr+2
log_k 0.000
-gamma 5.2600 0.1210
H4SiO4 = H4SiO4
log_k 0.000
Cl- = Cl-
log_k 0.000
-gamma 3.5000 0.0150
CO3-2 = CO3-2
log_k 0.000
-gamma 5.4000 0.0000
SO4-2 = SO4-2
log_k 0.000
-gamma 5.0000 -0.0400
NO3- = NO3-
log_k 0.000
-gamma 3.0000 0.0000
H3BO3 = H3BO3
log_k 0.000
PO4-3 = PO4-3
log_k 0.000
-gamma 4.0000 0.0000
F- = F-
log_k 0.000
-gamma 3.5000 0.0000
Li+ = Li+
log_k 0.000
-gamma 6.0000 0.0000
Br- = Br-
log_k 0.000
-gamma 3.0000 0.0000
Zn+2 = Zn+2
log_k 0.000
-gamma 5.0000 0.0000
Cd+2 = Cd+2
log_k 0.000
Pb+2 = Pb+2
log_k 0.000
Cu+2 = Cu+2
log_k 0.000
-gamma 6.0000 0.0000
H2O = OH- + H+
log_k -14.000
delta_h 13.362 kcal
-analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0
-gamma 3.5000 0.0000
2 H2O = O2 + 4 H+ + 4 e-
log_k -86.08
delta_h 134.79 kcal
2 H+ + 2 e- = H2
log_k -3.15
delta_h -1.759 kcal
CO3-2 + H+ = HCO3-
log_k 10.329
delta_h -3.561 kcal
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
-gamma 5.4000 0.0000
CO3-2 + 2 H+ = CO2 + H2O
log_k 16.681
delta_h -5.738 kcal
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
log_k 41.071
delta_h -61.039 kcal
SO4-2 + H+ = HSO4-
log_k 1.988
delta_h 3.85 kcal
-analytic -56.889 0.006473 2307.9 19.8858 0.0
HS- = S-2 + H+
log_k -12.918
delta_h 12.1 kcal
-gamma 5.0000 0.0000
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
log_k 33.65
delta_h -60.140 kcal
-gamma 3.5000 0.0000
HS- + H+ = H2S
log_k 6.994
delta_h -5.300 kcal
-analytical -11.17 0.02386 3279.0
NO3- + 2 H+ + 2 e- = NO2- + H2O
log_k 28.570
delta_h -43.760 kcal
-gamma 3.0000 0.0000
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
log_k 207.080
delta_h -312.130 kcal
NH4+ = NH3 + H+
log_k -9.252
delta_h 12.48 kcal
-analytic 0.6322 -0.001225 -2835.76
NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
log_k 119.077
delta_h -187.055 kcal
-gamma 2.5000 0.0000
NH4+ + SO4-2 = NH4SO4-
log_k 1.11
H3BO3 = H2BO3- + H+
log_k -9.240
delta_h 3.224 kcal
# -analytical 24.3919 0.012078 -1343.9 -13.2258
H3BO3 + F- = BF(OH)3-
log_k -0.400
delta_h 1.850 kcal
H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O
log_k 7.63
delta_h 1.618 kcal
H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O
log_k 13.67
delta_h -1.614 kcal
H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O
log_k 20.28
delta_h -1.846 kcal
PO4-3 + H+ = HPO4-2
log_k 12.346
delta_h -3.530 kcal
-gamma 4.0000 0.0000
PO4-3 + 2 H+ = H2PO4-
log_k 19.553
delta_h -4.520 kcal
-gamma 4.5000 0.0000
H+ + F- = HF
log_k 3.18
delta_h 3.18 kcal
-analytic -2.033 0.012645 429.01
H+ + 2 F- = HF2-
log_k 3.760
delta_h 4.550 kcal
Ca+2 + H2O = CaOH+ + H+
log_k -12.780
Ca+2 + CO3-2 = CaCO3
log_k 3.224
delta_h 3.545 kcal
-analytic -1228.732 -0.299440 35512.75 485.818
Ca+2 + CO3-2 + H+ = CaHCO3+
log_k 11.435
delta_h -0.871 kcal
-analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9
-gamma 5.4000 0.0000
Ca+2 + SO4-2 = CaSO4
log_k 2.300
delta_h 1.650 kcal
Ca+2 + HSO4- = CaHSO4+
log_k 1.08
Ca+2 + PO4-3 = CaPO4-
log_k 6.459
delta_h 3.100 kcal
Ca+2 + HPO4-2 = CaHPO4
log_k 2.739
delta_h 3.3 kcal
Ca+2 + H2PO4- = CaH2PO4+
log_k 1.408
delta_h 3.4 kcal
Ca+2 + F- = CaF+
log_k 0.940
delta_h 4.120 kcal
Mg+2 + H2O = MgOH+ + H+
log_k -11.440
delta_h 15.952 kcal
Mg+2 + CO3-2 = MgCO3
log_k 2.98
delta_h 2.713 kcal
-analytic 0.9910 0.00667
Mg+2 + H+ + CO3-2 = MgHCO3+
log_k 11.399
delta_h -2.771 kcal
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
Mg+2 + SO4-2 = MgSO4
log_k 2.370
delta_h 4.550 kcal
Mg+2 + PO4-3 = MgPO4-
log_k 6.589
delta_h 3.100 kcal
Mg+2 + HPO4-2 = MgHPO4
log_k 2.87
delta_h 3.3 kcal
Mg+2 + H2PO4- = MgH2PO4+
log_k 1.513
delta_h 3.4 kcal
Mg+2 + F- = MgF+
log_k 1.820
delta_h 3.200 kcal
Na+ + H2O = NaOH + H+
log_k -14.180
Na+ + CO3-2 = NaCO3-
log_k 1.270
delta_h 8.910 kcal
Na+ + HCO3- = NaHCO3
log_k -0.25
Na+ + SO4-2 = NaSO4-
log_k 0.700
delta_h 1.120 kcal
Na+ + HPO4-2 = NaHPO4-
log_k 0.29
Na+ + F- = NaF
log_k -0.240
K+ + H2O = KOH + H+
log_k -14.460
K+ + SO4-2 = KSO4-
log_k 0.850
delta_h 2.250 kcal
-analytical 3.106 0.0 -673.6
K+ + HPO4-2 = KHPO4-
log_k 0.29
Fe+2 + H2O = FeOH+ + H+
log_k -9.500
delta_h 13.200 kcal
Fe+2 + Cl- = FeCl+
log_k 0.140
Fe+2 + CO3-2 = FeCO3
log_k 4.380
Fe+2 + HCO3- = FeHCO3+
log_k 2.0
Fe+2 + SO4-2 = FeSO4
log_k 2.250
delta_h 3.230 kcal
Fe+2 + HSO4- = FeHSO4+
log_k 1.08
Fe+2 + 2HS- = Fe(HS)2
log_k 8.95
Fe+2 + 3HS- = Fe(HS)3-
log_k 10.987
Fe+2 + HPO4-2 = FeHPO4
log_k 3.6
Fe+2 + H2PO4- = FeH2PO4+
log_k 2.7
Fe+2 + F- = FeF+
log_k 1.000
Fe+2 = Fe+3 + e-
log_k -13.020
delta_h 9.680 kcal
-gamma 9.0000 0.0000
Fe+3 + H2O = FeOH+2 + H+
log_k -2.19
delta_h 10.4 kcal
Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
log_k -5.67
delta_h 17.1 kcal
Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
log_k -12.56
delta_h 24.8 kcal
Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
log_k -21.6
delta_h 31.9 kcal
2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
log_k -2.95
delta_h 13.5 kcal
3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
log_k -6.3
delta_h 14.3 kcal
Fe+3 + Cl- = FeCl+2
log_k 1.48
delta_h 5.6 kcal
Fe+3 + 2 Cl- = FeCl2+
log_k 2.13
Fe+3 + 3 Cl- = FeCl3
log_k 1.13
Fe+3 + SO4-2 = FeSO4+
log_k 4.04
delta_h 3.91 kcal
Fe+3 + HSO4- = FeHSO4+2
log_k 2.48
Fe+3 + 2 SO4-2 = Fe(SO4)2-
log_k 5.38
delta_h 4.60 kcal
Fe+3 + HPO4-2 = FeHPO4+
log_k 5.43
delta_h 5.76 kcal
Fe+3 + H2PO4- = FeH2PO4+2
log_k 5.43
Fe+3 + F- = FeF+2
log_k 6.2
delta_h 2.7 kcal
Fe+3 + 2 F- = FeF2+
log_k 10.8
delta_h 4.8 kcal
Fe+3 + 3 F- = FeF3
log_k 14.0
delta_h 5.4 kcal
Mn+2 + H2O = MnOH+ + H+
log_k -10.590
delta_h 14.400 kcal
Mn+2 + Cl- = MnCl+
log_k 0.610
Mn+2 + 2 Cl- = MnCl2
log_k 0.250
Mn+2 + 3 Cl- = MnCl3-
log_k -0.310
Mn+2 + CO3-2 = MnCO3
log_k 4.900
Mn+2 + HCO3- = MnHCO3+
log_k 1.95
Mn+2 + SO4-2 = MnSO4
log_k 2.250
delta_h 3.370 kcal
Mn+2 + 2 NO3- = Mn(NO3)2
log_k 0.600
delta_h -0.396 kcal
Mn+2 + F- = MnF+
log_k 0.840
Mn+2 = Mn+3 + e-
log_k -25.510
delta_h 25.800 kcal
Al+3 + H2O = AlOH+2 + H+
log_k -5.00
delta_h 11.49 kcal
-analytic -38.253 0.0 -656.27 14.327
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
log_k -10.1
delta_h 26.90 kcal
-analytic 88.500 0.0 -9391.6 -27.121
Al+3 + 3 H2O = Al(OH)3 + 3 H+
log_k -16.9
delta_h 39.89 kcal
-analytic 226.374 0.0 -18247.8 -73.597
Al+3 + 4 H2O = Al(OH)4- + 4 H+
log_k -22.7
delta_h 42.30 kcal
-analytic 51.578 0.0 -11168.9 -14.865
Al+3 + SO4-2 = AlSO4+
log_k 3.5
delta_h 2.29 kcal
Al+3 + 2SO4-2 = Al(SO4)2-
log_k 5.0
delta_h 3.11 kcal
Al+3 + HSO4- = AlHSO4+2
log_k 0.46
Al+3 + F- = AlF+2
log_k 7.000
delta_h 1.060 kcal
Al+3 + 2 F- = AlF2+
log_k 12.700
delta_h 1.980 kcal
Al+3 + 3 F- = AlF3
log_k 16.800
delta_h 2.160 kcal
Al+3 + 4 F- = AlF4-
log_k 19.400
delta_h 2.200 kcal
Al+3 + 5 F- = AlF5-2
log_k 20.600
delta_h 1.840 kcal
Al+3 + 6 F- = AlF6-3
log_k 20.600
delta_h -1.670 kcal
H4SiO4 = H3SiO4- + H+
log_k -9.83
delta_h 6.12 kcal
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0
H4SiO4 = H2SiO4-2 + 2 H+
log_k -23.0
delta_h 17.6 kcal
-analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0
H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O
log_k 30.180
delta_h -16.260 kcal
Ba+2 + H2O = BaOH+ + H+
log_k -13.470
Ba+2 + CO3-2 = BaCO3
log_k 2.71
delta_h 3.55 kcal
-analytic 0.113 0.008721
Ba+2 + HCO3- = BaHCO3+
log_k 0.982
delta_h 5.56 kcal
-analytical -3.0938 0.013669 0.0 0.0 0.0
Ba+2 + SO4-2 = BaSO4
log_k 2.700
Sr+2 + H2O = SrOH+ + H+
log_k -13.290
-gamma 5.0000 0.0000
Sr+2 + CO3-2 + H+ = SrHCO3+
log_k 11.509
delta_h 2.489 kcal
-analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9
-gamma 5.4000 0.0000
Sr+2 + CO3-2 = SrCO3
log_k 2.81
delta_h 5.22 kcal
-analytic -1.019 0.012826
Sr+2 + SO4-2 = SrSO4
log_k 2.290
delta_h 2.080 kcal
Li+ + H2O = LiOH + H+
log_k -13.640
Li+ + SO4-2 = LiSO4-
log_k 0.640
Cu+2 + e- = Cu+
log_k 2.720
delta_h 1.650 kcal
-gamma 2.5000 0.0000
Cu+2 + H2O = CuOH+ + H+
log_k -8.000
-gamma 4.0000 0.0000
Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
log_k -13.680
Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
log_k -26.900
Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
log_k -39.600
Cu+2 + SO4-2 = CuSO4
log_k 2.310
delta_h 1.220 kcal
Zn+2 + H2O = ZnOH+ + H+
log_k -8.96
delta_h 13.4 kcal
Zn+2 + 2 H2O = Zn(OH)2 + 2 H+
log_k -16.900
Zn+2 + 3 H2O = Zn(OH)3- + 3 H+
log_k -28.400
Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+
log_k -41.200
Zn+2 + Cl- = ZnCl+
log_k 0.43
delta_h 7.79 kcal
Zn+2 + 2 Cl- = ZnCl2
log_k 0.45
delta_h 8.5 kcal
Zn+2 + 3Cl- = ZnCl3-
log_k 0.5
delta_h 9.56 kcal
Zn+2 + 4Cl- = ZnCl4-2
log_k 0.2
delta_h 10.96 kcal
Zn+2 + CO3-2 = ZnCO3
log_k 5.3
Zn+2 + 2CO3-2 = Zn(CO3)2-2
log_k 9.63
Zn+2 + HCO3- = ZnHCO3+
log_k 2.1
Zn+2 + SO4-2 = ZnSO4
log_k 2.37
delta_h 1.36 kcal
Zn+2 + 2SO4-2 = Zn(SO4)2-2
log_k 3.28
Cd+2 + H2O = CdOH+ + H+
log_k -10.080
delta_h 13.1 kcal
Cd+2 + 2 H2O = Cd(OH)2 + 2 H+
log_k -20.350
Cd+2 + 3 H2O = Cd(OH)3- + 3 H+
log_k -33.300
Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+
log_k -47.350
Cd+2 + Cl- = CdCl+
log_k 1.980
delta_h 0.59 kcal
Cd+2 + 2 Cl- = CdCl2
log_k 2.600
delta_h 1.24 kcal
Cd+2 + 3 Cl- = CdCl3-
log_k 2.400
delta_h 3.9 kcal
Cd+2 + CO3-2 = CdCO3
log_k 2.9
Cd+2 + 2CO3-2 = Cd(CO3)2-2
log_k 6.4
Cd+2 + HCO3- = CdHCO3+
log_k 1.5
Cd+2 + SO4-2 = CdSO4
log_k 2.460
delta_h 1.08 kcal
Cd+2 + 2SO4-2 = Cd(SO4)2-2
log_k 3.5
Pb+2 + H2O = PbOH+ + H+
log_k -7.710
Pb+2 + 2 H2O = Pb(OH)2 + 2 H+
log_k -17.120
Pb+2 + 3 H2O = Pb(OH)3- + 3 H+
log_k -28.060
Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+
log_k -39.700
2 Pb+2 + H2O = Pb2OH+3 + H+
log_k -6.360
Pb+2 + Cl- = PbCl+
log_k 1.600
delta_h 4.38 kcal
Pb+2 + 2 Cl- = PbCl2
log_k 1.800
delta_h 1.08 kcal
Pb+2 + 3 Cl- = PbCl3-
log_k 1.700
delta_h 2.17 kcal
Pb+2 + 4 Cl- = PbCl4-2
log_k 1.380
delta_h 3.53 kcal
Pb+2 + CO3-2 = PbCO3
log_k 7.240
Pb+2 + 2 CO3-2 = Pb(CO3)2-2
log_k 10.640
Pb+2 + HCO3- = PbHCO3+
log_k 2.9
Pb+2 + SO4-2 = PbSO4
log_k 2.750
Pb+2 + 2 SO4-2 = Pb(SO4)2-2
log_k 3.470
Pb+2 + NO3- = PbNO3+
log_k 1.170
PHASES
Calcite
CaCO3 = CO3-2 + Ca+2
log_k -8.480
delta_h -2.297 kcal
-analytic -171.9065 -0.077993 2839.319 71.595
Aragonite
CaCO3 = CO3-2 + Ca+2
log_k -8.336
delta_h -2.589 kcal
-analytic -171.9773 -0.077993 2903.293 71.595
Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
log_k -17.090
delta_h -9.436 kcal
Siderite
FeCO3 = Fe+2 + CO3-2
log_k -10.890
delta_h -2.480 kcal
Rhodochrosite
MnCO3 = Mn+2 + CO3-2
log_k -11.130
delta_h -1.430 kcal
Strontianite
SrCO3 = Sr+2 + CO3-2
log_k -9.271
delta_h -0.400 kcal
-analytic 155.0305 0.0 -7239.594 -56.58638
Witherite
BaCO3 = Ba+2 + CO3-2
log_k -8.562
delta_h 0.703 kcal
-analytic 607.642 0.121098 -20011.25 -236.4948
Gypsum
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
log_k -4.580
delta_h -0.109 kcal
-analytic 68.2401 0.0 -3221.51 -25.0627
Anhydrite
CaSO4 = Ca+2 + SO4-2
log_k -4.360
delta_h -1.710 kcal
-analytic 197.52 0.0 -8669.8 -69.835
Celestite
SrSO4 = Sr+2 + SO4-2
log_k -6.630
delta_h -1.037 kcal
-analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0
Barite
BaSO4 = Ba+2 + SO4-2
log_k -9.970
delta_h 6.350 kcal
-analytic 136.035 0.0 -7680.41 -48.595
Hydroxyapatite
Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
log_k -3.421
delta_h -36.155 kcal
Fluorite
CaF2 = Ca+2 + 2 F-
log_k -10.600
delta_h 4.690 kcal
-analytic 66.348 0.0 -4298.2 -25.271
SiO2(a)
SiO2 + 2 H2O = H4SiO4
log_k -2.710
delta_h 3.340 kcal
-analytic -0.26 0.0 -731.0
Chalcedony
SiO2 + 2 H2O = H4SiO4
log_k -3.550
delta_h 4.720 kcal
-analytic -0.09 0.0 -1032.0
Quartz
SiO2 + 2 H2O = H4SiO4
log_k -3.980
delta_h 5.990 kcal
-analytic 0.41 0.0 -1309.0
Gibbsite
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
log_k 8.110
delta_h -22.800 kcal
Al(OH)3(a)
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
log_k 10.800
delta_h -26.500 kcal
Kaolinite
Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3
log_k 7.435
delta_h -35.300 kcal
Albite
NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4
log_k -18.002
delta_h 25.896 kcal
Anorthite
CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4
log_k -19.714
delta_h 11.580 kcal
K-feldspar
KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
log_k -20.573
delta_h 30.820 kcal
K-mica
KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
log_k 12.703
delta_h -59.376 kcal
Chlorite(14A)
Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O
log_k 68.38
delta_h -151.494 kcal
Ca-Montmorillonite
Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
log_k -45.027
delta_h 58.373 kcal
Talc
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4
log_k 21.399
delta_h -46.352 kcal
Illite
K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+
log_k -40.267
delta_h 54.684 kcal
Chrysotile
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2
log_k 32.200
delta_h -46.800 kcal
-analytic 13.248 0.0 10217.1 -6.1894
Sepiolite
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
log_k 15.760
delta_h -10.700 kcal
Sepiolite(d)
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
log_k 18.660
Hematite
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
log_k -4.008
delta_h -30.845 kcal
Goethite
FeOOH + 3 H+ = Fe+3 + 2 H2O
log_k -1.000
delta_h -14.48 kcal
Fe(OH)3(a)
Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
log_k 4.891
Pyrite
FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
log_k -18.479
delta_h 11.300 kcal
FeS(ppt)
FeS + H+ = Fe+2 + HS-
log_k -3.915
Mackinawite
FeS + H+ = Fe+2 + HS-
log_k -4.648
Sulfur
S + 2H+ + 2e- = H2S
log_k 4.882
delta_h -9.5 kcal
Vivianite
Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O
log_k -36.000
Pyrolusite
MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O
log_k 41.380
delta_h -65.110 kcal
Hausmannite
Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O
log_k 61.030
delta_h -100.640 kcal
Manganite
MnOOH + 3 H+ + e- = Mn+2 + 2 H2O
log_k 25.340
Pyrochroite
Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O
log_k 15.200
Halite
NaCl = Na+ + Cl-
log_k 1.582
delta_h 0.918 kcal
CO2(g)
CO2 = CO2
log_k -1.468
delta_h -4.776 kcal
-analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0
O2(g)
O2 = O2
log_k -2.960
delta_h -1.844 kcal
H2(g)
H2 = H2
log_k -3.150
delta_h -1.759 kcal
H2O(g)
H2O = H2O
log_k 1.51
delta_h -44.03 kJ
# Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978)
N2(g)
N2 = N2
log_k -3.260
delta_h -1.358 kcal
H2S(g)
H2S = H2S
log_k -0.997
delta_h -4.570 kcal
CH4(g)
CH4 = CH4
log_k -2.860
delta_h -3.373 kcal
NH3(g)
NH3 = NH3
log_k 1.770
delta_h -8.170 kcal
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
log_k -2.209
delta_h 4.910 kcal
-analytic 1.447 -0.004153 0.0 0.0 -214949.0
Alunite
KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O
log_k -1.400
delta_h -50.250 kcal
Jarosite-K
KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2
log_k -9.210
delta_h -31.280 kcal
Zn(OH)2(e)
Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O
log_k 11.50
Smithsonite
ZnCO3 = Zn+2 + CO3-2
log_k -10.000
delta_h -4.36 kcal
Sphalerite
ZnS + H+ = Zn+2 + HS-
log_k -11.618
delta_h 8.250 kcal
Willemite 289
Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4
log_k 15.33
delta_h -33.37 kcal
Cd(OH)2
Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O
log_k 13.650
Otavite 315
CdCO3 = Cd+2 + CO3-2
log_k -12.1
delta_h -0.019 kcal
CdSiO3 328
CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4
log_k 9.06
delta_h -16.63 kcal
CdSO4 329
CdSO4 = Cd+2 + SO4-2
log_k -0.1
delta_h -14.74 kcal
Cerrusite 365
PbCO3 = Pb+2 + CO3-2
log_k -13.13
delta_h 4.86 kcal
Anglesite 384
PbSO4 = Pb+2 + SO4-2
log_k -7.79
delta_h 2.15 kcal
Pb(OH)2 389
Pb(OH)2 + 2H+ = Pb+2 + 2H2O
log_k 8.15
delta_h -13.99 kcal
EXCHANGE_MASTER_SPECIES
X X-
EXCHANGE_SPECIES
X- = X-
log_k 0.0
Na+ + X- = NaX
log_k 0.0
-gamma 4.0 0.075
K+ + X- = KX
log_k 0.7
-gamma 3.5 0.015
delta_h -4.3 # Jardine & Sparks, 1984
Li+ + X- = LiX
log_k -0.08
-gamma 6.0 0.0
delta_h 1.4 # Merriam & Thomas, 1956
NH4+ + X- = NH4X
log_k 0.6
-gamma 2.5 0.0
delta_h -2.4 # Laudelout et al., 1968
Ca+2 + 2X- = CaX2
log_k 0.8
-gamma 5.0 0.165
delta_h 7.2 # Van Bladel & Gheyl, 1980
Mg+2 + 2X- = MgX2
log_k 0.6
-gamma 5.5 0.2
delta_h 7.4 # Laudelout et al., 1968
Sr+2 + 2X- = SrX2
log_k 0.91
-gamma 5.26 0.121
delta_h 5.5 # Laudelout et al., 1968
Ba+2 + 2X- = BaX2
log_k 0.91
-gamma 5.0 0.0
delta_h 4.5 # Laudelout et al., 1968
Mn+2 + 2X- = MnX2
log_k 0.52
-gamma 6.0 0.0
Fe+2 + 2X- = FeX2
log_k 0.44
-gamma 6.0 0.0
Cu+2 + 2X- = CuX2
log_k 0.6
-gamma 6.0 0.0
Zn+2 + 2X- = ZnX2
log_k 0.8
-gamma 5.0 0.0
Cd+2 + 2X- = CdX2
log_k 0.8
Pb+2 + 2X- = PbX2
log_k 1.05
Al+3 + 3X- = AlX3
log_k 0.41
-gamma 9.0 0.0
AlOH+2 + 2X- = AlOHX2
log_k 0.89
-gamma 0.0 0.0
SURFACE_MASTER_SPECIES
Hfo_s Hfo_sOH
Hfo_w Hfo_wOH
SURFACE_SPECIES
# All surface data from
# Dzombak and Morel, 1990
#
#
# Acid-base data from table 5.7
#
# strong binding site--Hfo_s,
Hfo_sOH = Hfo_sOH
log_k 0.0
Hfo_sOH + H+ = Hfo_sOH2+
log_k 7.29 # = pKa1,int
Hfo_sOH = Hfo_sO- + H+
log_k -8.93 # = -pKa2,int
# weak binding site--Hfo_w
Hfo_wOH = Hfo_wOH
log_k 0.0
Hfo_wOH + H+ = Hfo_wOH2+
log_k 7.29 # = pKa1,int
Hfo_wOH = Hfo_wO- + H+
log_k -8.93 # = -pKa2,int
###############################################
# CATIONS #
###############################################
#
# Cations from table 10.1 or 10.5
#
# Calcium
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
log_k 4.97
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
log_k -5.85
# Strontium
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
log_k 5.01
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
log_k -6.58
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+
log_k -17.60
# Barium
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
log_k 5.46
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
log_k -7.2 # table 10.5
#
# Cations from table 10.2
#
# Cadmium
Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
log_k 0.47
Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
log_k -2.91
# Zinc
Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
log_k 0.99
Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
log_k -1.99
# Copper
Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
log_k 2.89
Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
log_k 0.6 # table 10.5
# Lead
Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
log_k 4.65
Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
log_k 0.3 # table 10.5
#
# Derived constants table 10.5
#
# Magnesium
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
log_k -4.6
# Manganese
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
log_k -0.4 # table 10.5
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
log_k -3.5 # table 10.5
# Iron
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
log_k 0.7 # LFER using table 10.5
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
log_k -2.5 # LFER using table 10.5
###############################################
# ANIONS #
###############################################
#
# Anions from table 10.6
#
# Phosphate
Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O
log_k 31.29
Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O
log_k 25.39
Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
log_k 17.72
#
# Anions from table 10.7
#
# Borate
Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
log_k 0.62
#
# Anions from table 10.8
#
# Sulfate
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
log_k 7.78
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
log_k 0.79
#
# Derived constants table 10.10
#
Hfo_wOH + F- + H+ = Hfo_wF + H2O
log_k 8.7
Hfo_wOH + F- = Hfo_wOHF-
log_k 1.6
#
# Carbonate: Van Geen et al., 1994 reoptimized for HFO
# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L
#
# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
# log_k 12.56
#
# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
# log_k 20.62
# 9/19/96
# Added analytical expression for H2S, NH3, KSO4.
# Added species CaHSO4+.
# Added delta H for Goethite.
RATES
###########
#K-feldspar
###########
#
# Sverdrup, H.U., 1990, The kinetics of base cation release due to
# chemical weathering: Lund University Press, Lund, 246 p.
#
# Example of KINETICS data block for K-feldspar rate:
# KINETICS 1
# K-feldspar
# -m0 2.16 # 10% K-fsp, 0.1 mm cubes
# -m 1.94
# -parms 1.36e4 0.1
K-feldspar
-start
1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
3 rem parm(2) = corrects for field rate relative to lab rate
4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
10 dif_temp = 1/TK - 1/298
20 pk_H = 12.5 + 3134 * dif_temp
30 pk_w = 15.3 + 1838 * dif_temp
40 pk_OH = 14.2 + 3134 * dif_temp
50 pk_CO2 = 14.6 + 1677 * dif_temp
#60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC
70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6
#72 rate = rate + 10^-pk_org * TOT("Doc")^0.4
80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time
81 rem decrease rate on precipitation
90 if SR("K-feldspar") > 1 then moles = moles * 0.1
100 save moles
-end
###########
#Albite
###########
#
# Sverdrup, H.U., 1990, The kinetics of base cation release due to
# chemical weathering: Lund University Press, Lund, 246 p.
#
# Example of KINETICS data block for Albite rate:
# KINETICS 1
# Albite
# -m0 0.43 # 2% Albite, 0.1 mm cubes
# -parms 2.72e3 0.1
Albite
-start
1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
3 rem parm(2) = corrects for field rate relative to lab rate
4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
10 dif_temp = 1/TK - 1/298
20 pk_H = 12.5 + 3359 * dif_temp
30 pk_w = 14.8 + 2648 * dif_temp
40 pk_OH = 13.7 + 3359 * dif_temp
#41 rem ^12.9 in Sverdrup, but larger than for oligoclase...
50 pk_CO2 = 14.0 + 1677 * dif_temp
#60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC
70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6
#72 rate = rate + 10^-pk_org * TOT("Doc")^0.4
80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time
81 rem decrease rate on precipitation
90 if SR("Albite") > 1 then moles = moles * 0.1
100 save moles
-end
########
#Calcite
########
#
# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978,
# American Journal of Science, v. 278, p. 179-216.
#
# Example of KINETICS data block for calcite rate:
#
# KINETICS 1
# Calcite
# -tol 1e-8
# -m0 3.e-3
# -m 3.e-3
# -parms 5.0 0.6
Calcite
-start
1 rem Modified from Plummer and others, 1978
2 rem parm(1) = A/V, 1/m parm(2) = exponent for m/m0
10 si_cc = si("Calcite")
20 if (m <= 0 and si_cc < 0) then goto 200
30 k1 = 10^(0.198 - 444.0 / (273.16 + tc) )
40 k2 = 10^(2.84 - 2177.0 / (273.16 + tc) )
50 if tc <= 25 then k3 = 10^(-5.86 - 317.0 / (273.16 + tc) )
60 if tc > 25 then k3 = 10^(-1.1 - 1737.0 / (273.16 + tc) )
70 t = 1
80 if m0 > 0 then t = m/m0
90 if t = 0 then t = 1
100 moles = parm(1) * (t)^parm(2)
110 moles = moles * (k1 * act("H+") + k2 * act("CO2") + k3 * act("H2O"))
120 moles = moles * (1 - 10^(2/3*si_cc))
130 moles = moles * time
140 if (moles > m) then moles = m
150 if (moles >= 0) then goto 200
160 temp = tot("Ca")
170 mc = tot("C(4)")
180 if mc < temp then temp = mc
190 if -moles > temp then moles = -temp
200 save moles
-end
#######
#Pyrite
#######
#
# Williamson, M.A. and Rimstidt, J.D., 1994,
# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454.
#
# Example of KINETICS data block for pyrite rate:
# KINETICS 1
# Pyrite
# -tol 1e-8
# -m0 5.e-4
# -m 5.e-4
# -parms 2.0 0.67 .5 -0.11
Pyrite
-start
1 rem Williamson and Rimstidt, 1994
2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0)
3 rem parm(3) = exp for O2 parm(4) = exp for H+
10 if (m <= 0) then goto 200
20 if (si("Pyrite") >= 0) then goto 200
20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0)
30 moles = 10^rate * time
40 if (moles > m) then moles = m
200 save moles
-end
##########
#Organic_C
##########
#
# Example of KINETICS data block for Organic_C rate:
# KINETICS 1
# Organic_C
# -tol 1e-8
# # m in mol/kgw
# -m0 5e-3
# -m 5e-3
Organic_C
-start
1 rem Additive Monod kinetics
2 rem Electron acceptors: O2, NO3, and SO4
10 if (m <= 0) then goto 200
20 mO2 = mol("O2")
30 mNO3 = tot("N(5)")
40 mSO4 = tot("S(6)")
50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3)
60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4)
70 moles = rate * m * (m/m0) * time
80 if (moles > m) then moles = m
200 save moles
-end
###########
#Pyrolusite
###########
#
# Postma, D. and Appelo, C.A.J., 2000, GCA 64, in press
#
# Example of KINETICS data block for Pyrolusite
# KINETICS 1-12
# Pyrolusite
# -tol 1.e-7
# -m0 0.1
# -m 0.1
Pyrolusite
-start
5 if (m <= 0.0) then goto 200
7 sr_pl = sr("Pyrolusite")
9 if abs(1 - sr_pl) < 0.1 then goto 200
10 if (sr_pl > 1.0) then goto 100
#20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells)
#22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5
30 Fe_t = tot("Fe(2)")
32 if Fe_t < 1.e-8 then goto 200
40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl)
50 if moles > Fe_t / 2 then moles = Fe_t / 2
70 if moles > m then moles = m
90 goto 200
100 Mn_t = tot("Mn")
110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time
120 if moles <= -Mn_t then moles = -Mn_t
200 save moles
-end
END