Three database files are distributed with the program: phreeqc.dat , wateq4f.dat , and minteq.dat . Each of these database files contains SOLUTION_MASTER_SPECIES, SOLUTION_SPECIES, PHASES, SURFACE_MASTER_SPECIES, and SURFACE_SPECIES data blocks. Phreeqc.dat and wateq4f.dat also have EXCHANGE_MASTER_SPECIES, EXCHANGE_SPECIES and RATES data blocks.
The file named phreeqc.dat contains the thermodynamic data for aqueous species and gas and mineral phases that are essentially the same as those found in the latest release of the program PHREEQE (Parkhurst and others, 1980). Only minor modifications have been made to make the data consistent with the tabulations in Nordstrom and others (1990) and WATEQ4F (Ball and Nordstrom, 1991). The database file contains data for the following elements: aluminum, barium, boron, bromide, cadmium, calcium, carbon, chloride, copper, fluoride, hydrogen, iron, lead, lithium, magnesium, manganese, nitrogen, oxygen, phosphorous, potassium, silica, sodium, strontium, sulfur, and zinc. The thermodynamic data for cation exchange are taken from Appelo and Postma (1993, p. 160) and converted to log K , accounting for valence of the exchanging species. The thermodynamic data for surface species are taken from Dzombak and Morel (1990); acid base surface reactions are taken from table 5.7 and other cation and anion reactions are taken from tables in chapter 10. Preliminary rate expressions for K-feldspar (Sverdrup, 1990), albite (Sverdrup, 1990), calcite (modified from Plummer and others, 1978), pyrite (Williamson and Rimstidt, 1994), organic carbon ("Organic_c") (additive Monod kinetics for oxygen, nitrate, and sulfate), and pyrolusite (Postma, D. and Appelo, C.A.J., 2000, Geochim. Cosmochim. Acta , in press ) are included from various sources. Examples of KINETICS data block for each of these expressions are included in the definitions in the RATES data block in phreeqc.dat .
The file named wateq4f.dat contains thermodynamic data for the aqueous species and gas and mineral phases that are essentially the same as WATEQ4F (Ball and Nordstrom, 1991). In addition to data for the elements in the database file, phreeqc.dat , the database file wateq4f.dat contains data for the elements: arsenic, cesium, iodine, nickel, rubidium, selenium, silver, and uranium. The WATEQ4F-derived database file also includes complexation constants for two generalized organic ligands, fulvate and humate. Some additional gases are included; some carbonate reactions retain the chemical equations used in PHREEQE. Cation exchange data from Appelo and Postma (1993) as well as surface complexation reactions from Dzombak and Morel (1990) have been included. The rate expressions in phreeqc.dat are also included in wateq4f.dat .
The file named minteq.dat contains thermodynamic data for the aqueous species and gas and mineral phases that are derived from the database files of MINTEQA2 (Allison and others, 1990). The database file contains data for the following elements: aluminum, barium, boron, bromide, cadmium, calcium, carbon, chloride, copper, fluoride, hydrogen, iron, lead, lithium, magnesium, manganese, nitrogen, oxygen, phosphorous, potassium, silica, sodium, strontium, sulfur, and zinc. It also has data for the following organic ligands: benzoate, p-acetate, isophthalate, diethylamine, n-butylamine, methylamine, dimethylamine, tributylphosphate, hexylamine, ethylenediamine, n-propylamine, isopropylamine, trimethylamine, citrate, NTA, EDTA, propanoate, butanoate, isobutyrate, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, formate, isovalerate, valerate, acetate, tartrate, glycine, salicylate, glutamate, and phthalate.
A listing of the file, phreeqc.dat follows. In the interest of space, the other files are not included in this attachment, but are included with the program distribution.
Table 55. --Attachment B. phreeqc.dat: Database file derived from PHREEQE
SOLUTION_MASTER_SPECIES # #element species alk gfw_formula element_gfw # H H+ -1. H 1.008 H(0) H2 0.0 H H(1) H+ -1. 0.0 E e- 0.0 0.0 0.0 O H2O 0.0 O 16.00 O(0) O2 0.0 O O(-2) H2O 0.0 0.0 Ca Ca+2 0.0 Ca 40.08 Mg Mg+2 0.0 Mg 24.312 Na Na+ 0.0 Na 22.9898 K K+ 0.0 K 39.102 Fe Fe+2 0.0 Fe 55.847 Fe(+2) Fe+2 0.0 Fe Fe(+3) Fe+3 -2.0 Fe Mn Mn+2 0.0 Mn 54.938 Mn(+2) Mn+2 0.0 Mn Mn(+3) Mn+3 0.0 Mn Al Al+3 0.0 Al 26.9815 Ba Ba+2 0.0 Ba 137.34 Sr Sr+2 0.0 Sr 87.62 Si H4SiO4 0.0 SiO2 28.0843 Cl Cl- 0.0 Cl 35.453 C CO3-2 2.0 HCO3 12.0111 C(+4) CO3-2 2.0 HCO3 C(-4) CH4 0.0 CH4 Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 S SO4-2 0.0 SO4 32.064 S(6) SO4-2 0.0 SO4 S(-2) HS- 1.0 S N NO3- 0.0 N 14.0067 N(+5) NO3- 0.0 N N(+3) NO2- 0.0 N N(0) N2 0.0 N N(-3) NH4+ 0.0 N B H3BO3 0.0 B 10.81 P PO4-3 2.0 P 30.9738 F F- 0.0 F 18.9984 Li Li+ 0.0 Li 6.939 Br Br- 0.0 Br 79.904 Zn Zn+2 0.0 Zn 65.37 Cd Cd+2 0.0 Cd 112.4 Pb Pb+2 0.0 Pb 207.19 Cu Cu+2 0.0 Cu 63.546 Cu(+2) Cu+2 0.0 Cu Cu(+1) Cu+1 0.0 Cu SOLUTION_SPECIES H+ = H+ log_k 0.000 -gamma 9.0000 0.0000 e- = e- log_k 0.000 H2O = H2O log_k 0.000 Ca+2 = Ca+2 log_k 0.000 -gamma 5.0000 0.1650 Mg+2 = Mg+2 log_k 0.000 -gamma 5.5000 0.2000 Na+ = Na+ log_k 0.000 -gamma 4.0000 0.0750 K+ = K+ log_k 0.000 -gamma 3.5000 0.0150 Fe+2 = Fe+2 log_k 0.000 -gamma 6.0000 0.0000 Mn+2 = Mn+2 log_k 0.000 -gamma 6.0000 0.0000 Al+3 = Al+3 log_k 0.000 -gamma 9.0000 0.0000 Ba+2 = Ba+2 log_k 0.000 -gamma 5.0000 0.0000 Sr+2 = Sr+2 log_k 0.000 -gamma 5.2600 0.1210 H4SiO4 = H4SiO4 log_k 0.000 Cl- = Cl- log_k 0.000 -gamma 3.5000 0.0150 CO3-2 = CO3-2 log_k 0.000 -gamma 5.4000 0.0000 SO4-2 = SO4-2 log_k 0.000 -gamma 5.0000 -0.0400 NO3- = NO3- log_k 0.000 -gamma 3.0000 0.0000 H3BO3 = H3BO3 log_k 0.000 PO4-3 = PO4-3 log_k 0.000 -gamma 4.0000 0.0000 F- = F- log_k 0.000 -gamma 3.5000 0.0000 Li+ = Li+ log_k 0.000 -gamma 6.0000 0.0000 Br- = Br- log_k 0.000 -gamma 3.0000 0.0000 Zn+2 = Zn+2 log_k 0.000 -gamma 5.0000 0.0000 Cd+2 = Cd+2 log_k 0.000 Pb+2 = Pb+2 log_k 0.000 Cu+2 = Cu+2 log_k 0.000 -gamma 6.0000 0.0000 H2O = OH- + H+ log_k -14.000 delta_h 13.362 kcal -analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0 -gamma 3.5000 0.0000 2 H2O = O2 + 4 H+ + 4 e- log_k -86.08 delta_h 134.79 kcal 2 H+ + 2 e- = H2 log_k -3.15 delta_h -1.759 kcal CO3-2 + H+ = HCO3- log_k 10.329 delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4000 0.0000 CO3-2 + 2 H+ = CO2 + H2O log_k 16.681 delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O log_k 41.071 delta_h -61.039 kcal SO4-2 + H+ = HSO4- log_k 1.988 delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 0.0 HS- = S-2 + H+ log_k -12.918 delta_h 12.1 kcal -gamma 5.0000 0.0000 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O log_k 33.65 delta_h -60.140 kcal -gamma 3.5000 0.0000 HS- + H+ = H2S log_k 6.994 delta_h -5.300 kcal -analytical -11.17 0.02386 3279.0 NO3- + 2 H+ + 2 e- = NO2- + H2O log_k 28.570 delta_h -43.760 kcal -gamma 3.0000 0.0000 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O log_k 207.080 delta_h -312.130 kcal NH4+ = NH3 + H+ log_k -9.252 delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O log_k 119.077 delta_h -187.055 kcal -gamma 2.5000 0.0000 NH4+ + SO4-2 = NH4SO4- log_k 1.11 H3BO3 = H2BO3- + H+ log_k -9.240 delta_h 3.224 kcal # -analytical 24.3919 0.012078 -1343.9 -13.2258 H3BO3 + F- = BF(OH)3- log_k -0.400 delta_h 1.850 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O log_k 7.63 delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O log_k 13.67 delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O log_k 20.28 delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 log_k 12.346 delta_h -3.530 kcal -gamma 4.0000 0.0000 PO4-3 + 2 H+ = H2PO4- log_k 19.553 delta_h -4.520 kcal -gamma 4.5000 0.0000 H+ + F- = HF log_k 3.18 delta_h 3.18 kcal -analytic -2.033 0.012645 429.01 H+ + 2 F- = HF2- log_k 3.760 delta_h 4.550 kcal Ca+2 + H2O = CaOH+ + H+ log_k -12.780 Ca+2 + CO3-2 = CaCO3 log_k 3.224 delta_h 3.545 kcal -analytic -1228.732 -0.299440 35512.75 485.818 Ca+2 + CO3-2 + H+ = CaHCO3+ log_k 11.435 delta_h -0.871 kcal -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 -gamma 5.4000 0.0000 Ca+2 + SO4-2 = CaSO4 log_k 2.300 delta_h 1.650 kcal Ca+2 + HSO4- = CaHSO4+ log_k 1.08 Ca+2 + PO4-3 = CaPO4- log_k 6.459 delta_h 3.100 kcal Ca+2 + HPO4-2 = CaHPO4 log_k 2.739 delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ log_k 1.408 delta_h 3.4 kcal Ca+2 + F- = CaF+ log_k 0.940 delta_h 4.120 kcal Mg+2 + H2O = MgOH+ + H+ log_k -11.440 delta_h 15.952 kcal Mg+2 + CO3-2 = MgCO3 log_k 2.98 delta_h 2.713 kcal -analytic 0.9910 0.00667 Mg+2 + H+ + CO3-2 = MgHCO3+ log_k 11.399 delta_h -2.771 kcal -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 Mg+2 + SO4-2 = MgSO4 log_k 2.370 delta_h 4.550 kcal Mg+2 + PO4-3 = MgPO4- log_k 6.589 delta_h 3.100 kcal Mg+2 + HPO4-2 = MgHPO4 log_k 2.87 delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ log_k 1.513 delta_h 3.4 kcal Mg+2 + F- = MgF+ log_k 1.820 delta_h 3.200 kcal Na+ + H2O = NaOH + H+ log_k -14.180 Na+ + CO3-2 = NaCO3- log_k 1.270 delta_h 8.910 kcal Na+ + HCO3- = NaHCO3 log_k -0.25 Na+ + SO4-2 = NaSO4- log_k 0.700 delta_h 1.120 kcal Na+ + HPO4-2 = NaHPO4- log_k 0.29 Na+ + F- = NaF log_k -0.240 K+ + H2O = KOH + H+ log_k -14.460 K+ + SO4-2 = KSO4- log_k 0.850 delta_h 2.250 kcal -analytical 3.106 0.0 -673.6 K+ + HPO4-2 = KHPO4- log_k 0.29 Fe+2 + H2O = FeOH+ + H+ log_k -9.500 delta_h 13.200 kcal Fe+2 + Cl- = FeCl+ log_k 0.140 Fe+2 + CO3-2 = FeCO3 log_k 4.380 Fe+2 + HCO3- = FeHCO3+ log_k 2.0 Fe+2 + SO4-2 = FeSO4 log_k 2.250 delta_h 3.230 kcal Fe+2 + HSO4- = FeHSO4+ log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 log_k 8.95 Fe+2 + 3HS- = Fe(HS)3- log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ log_k 2.7 Fe+2 + F- = FeF+ log_k 1.000 Fe+2 = Fe+3 + e- log_k -13.020 delta_h 9.680 kcal -gamma 9.0000 0.0000 Fe+3 + H2O = FeOH+2 + H+ log_k -2.19 delta_h 10.4 kcal Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ log_k -5.67 delta_h 17.1 kcal Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ log_k -12.56 delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ log_k -21.6 delta_h 31.9 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ log_k -2.95 delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ log_k -6.3 delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 log_k 1.48 delta_h 5.6 kcal Fe+3 + 2 Cl- = FeCl2+ log_k 2.13 Fe+3 + 3 Cl- = FeCl3 log_k 1.13 Fe+3 + SO4-2 = FeSO4+ log_k 4.04 delta_h 3.91 kcal Fe+3 + HSO4- = FeHSO4+2 log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- log_k 5.38 delta_h 4.60 kcal Fe+3 + HPO4-2 = FeHPO4+ log_k 5.43 delta_h 5.76 kcal Fe+3 + H2PO4- = FeH2PO4+2 log_k 5.43 Fe+3 + F- = FeF+2 log_k 6.2 delta_h 2.7 kcal Fe+3 + 2 F- = FeF2+ log_k 10.8 delta_h 4.8 kcal Fe+3 + 3 F- = FeF3 log_k 14.0 delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ log_k -10.590 delta_h 14.400 kcal Mn+2 + Cl- = MnCl+ log_k 0.610 Mn+2 + 2 Cl- = MnCl2 log_k 0.250 Mn+2 + 3 Cl- = MnCl3- log_k -0.310 Mn+2 + CO3-2 = MnCO3 log_k 4.900 Mn+2 + HCO3- = MnHCO3+ log_k 1.95 Mn+2 + SO4-2 = MnSO4 log_k 2.250 delta_h 3.370 kcal Mn+2 + 2 NO3- = Mn(NO3)2 log_k 0.600 delta_h -0.396 kcal Mn+2 + F- = MnF+ log_k 0.840 Mn+2 = Mn+3 + e- log_k -25.510 delta_h 25.800 kcal Al+3 + H2O = AlOH+2 + H+ log_k -5.00 delta_h 11.49 kcal -analytic -38.253 0.0 -656.27 14.327 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ log_k -10.1 delta_h 26.90 kcal -analytic 88.500 0.0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ log_k -16.9 delta_h 39.89 kcal -analytic 226.374 0.0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ log_k -22.7 delta_h 42.30 kcal -analytic 51.578 0.0 -11168.9 -14.865 Al+3 + SO4-2 = AlSO4+ log_k 3.5 delta_h 2.29 kcal Al+3 + 2SO4-2 = Al(SO4)2- log_k 5.0 delta_h 3.11 kcal Al+3 + HSO4- = AlHSO4+2 log_k 0.46 Al+3 + F- = AlF+2 log_k 7.000 delta_h 1.060 kcal Al+3 + 2 F- = AlF2+ log_k 12.700 delta_h 1.980 kcal Al+3 + 3 F- = AlF3 log_k 16.800 delta_h 2.160 kcal Al+3 + 4 F- = AlF4- log_k 19.400 delta_h 2.200 kcal Al+3 + 5 F- = AlF5-2 log_k 20.600 delta_h 1.840 kcal Al+3 + 6 F- = AlF6-3 log_k 20.600 delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ log_k -9.83 delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 H4SiO4 = H2SiO4-2 + 2 H+ log_k -23.0 delta_h 17.6 kcal -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O log_k 30.180 delta_h -16.260 kcal Ba+2 + H2O = BaOH+ + H+ log_k -13.470 Ba+2 + CO3-2 = BaCO3 log_k 2.71 delta_h 3.55 kcal -analytic 0.113 0.008721 Ba+2 + HCO3- = BaHCO3+ log_k 0.982 delta_h 5.56 kcal -analytical -3.0938 0.013669 0.0 0.0 0.0 Ba+2 + SO4-2 = BaSO4 log_k 2.700 Sr+2 + H2O = SrOH+ + H+ log_k -13.290 -gamma 5.0000 0.0000 Sr+2 + CO3-2 + H+ = SrHCO3+ log_k 11.509 delta_h 2.489 kcal -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 -gamma 5.4000 0.0000 Sr+2 + CO3-2 = SrCO3 log_k 2.81 delta_h 5.22 kcal -analytic -1.019 0.012826 Sr+2 + SO4-2 = SrSO4 log_k 2.290 delta_h 2.080 kcal Li+ + H2O = LiOH + H+ log_k -13.640 Li+ + SO4-2 = LiSO4- log_k 0.640 Cu+2 + e- = Cu+ log_k 2.720 delta_h 1.650 kcal -gamma 2.5000 0.0000 Cu+2 + H2O = CuOH+ + H+ log_k -8.000 -gamma 4.0000 0.0000 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ log_k -13.680 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ log_k -26.900 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ log_k -39.600 Cu+2 + SO4-2 = CuSO4 log_k 2.310 delta_h 1.220 kcal Zn+2 + H2O = ZnOH+ + H+ log_k -8.96 delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ log_k -16.900 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ log_k -28.400 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ log_k -41.200 Zn+2 + Cl- = ZnCl+ log_k 0.43 delta_h 7.79 kcal Zn+2 + 2 Cl- = ZnCl2 log_k 0.45 delta_h 8.5 kcal Zn+2 + 3Cl- = ZnCl3- log_k 0.5 delta_h 9.56 kcal Zn+2 + 4Cl- = ZnCl4-2 log_k 0.2 delta_h 10.96 kcal Zn+2 + CO3-2 = ZnCO3 log_k 5.3 Zn+2 + 2CO3-2 = Zn(CO3)2-2 log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ log_k 2.1 Zn+2 + SO4-2 = ZnSO4 log_k 2.37 delta_h 1.36 kcal Zn+2 + 2SO4-2 = Zn(SO4)2-2 log_k 3.28 Cd+2 + H2O = CdOH+ + H+ log_k -10.080 delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ log_k -20.350 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ log_k -33.300 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ log_k -47.350 Cd+2 + Cl- = CdCl+ log_k 1.980 delta_h 0.59 kcal Cd+2 + 2 Cl- = CdCl2 log_k 2.600 delta_h 1.24 kcal Cd+2 + 3 Cl- = CdCl3- log_k 2.400 delta_h 3.9 kcal Cd+2 + CO3-2 = CdCO3 log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 log_k 6.4 Cd+2 + HCO3- = CdHCO3+ log_k 1.5 Cd+2 + SO4-2 = CdSO4 log_k 2.460 delta_h 1.08 kcal Cd+2 + 2SO4-2 = Cd(SO4)2-2 log_k 3.5 Pb+2 + H2O = PbOH+ + H+ log_k -7.710 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ log_k -17.120 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ log_k -28.060 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ log_k -39.700 2 Pb+2 + H2O = Pb2OH+3 + H+ log_k -6.360 Pb+2 + Cl- = PbCl+ log_k 1.600 delta_h 4.38 kcal Pb+2 + 2 Cl- = PbCl2 log_k 1.800 delta_h 1.08 kcal Pb+2 + 3 Cl- = PbCl3- log_k 1.700 delta_h 2.17 kcal Pb+2 + 4 Cl- = PbCl4-2 log_k 1.380 delta_h 3.53 kcal Pb+2 + CO3-2 = PbCO3 log_k 7.240 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 log_k 10.640 Pb+2 + HCO3- = PbHCO3+ log_k 2.9 Pb+2 + SO4-2 = PbSO4 log_k 2.750 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 log_k 3.470 Pb+2 + NO3- = PbNO3+ log_k 1.170 PHASES Calcite CaCO3 = CO3-2 + Ca+2 log_k -8.480 delta_h -2.297 kcal -analytic -171.9065 -0.077993 2839.319 71.595 Aragonite CaCO3 = CO3-2 + Ca+2 log_k -8.336 delta_h -2.589 kcal -analytic -171.9773 -0.077993 2903.293 71.595 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 log_k -17.090 delta_h -9.436 kcal Siderite FeCO3 = Fe+2 + CO3-2 log_k -10.890 delta_h -2.480 kcal Rhodochrosite MnCO3 = Mn+2 + CO3-2 log_k -11.130 delta_h -1.430 kcal Strontianite SrCO3 = Sr+2 + CO3-2 log_k -9.271 delta_h -0.400 kcal -analytic 155.0305 0.0 -7239.594 -56.58638 Witherite BaCO3 = Ba+2 + CO3-2 log_k -8.562 delta_h 0.703 kcal -analytic 607.642 0.121098 -20011.25 -236.4948 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O log_k -4.580 delta_h -0.109 kcal -analytic 68.2401 0.0 -3221.51 -25.0627 Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.360 delta_h -1.710 kcal -analytic 197.52 0.0 -8669.8 -69.835 Celestite SrSO4 = Sr+2 + SO4-2 log_k -6.630 delta_h -1.037 kcal -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 Barite BaSO4 = Ba+2 + SO4-2 log_k -9.970 delta_h 6.350 kcal -analytic 136.035 0.0 -7680.41 -48.595 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 log_k -3.421 delta_h -36.155 kcal Fluorite CaF2 = Ca+2 + 2 F- log_k -10.600 delta_h 4.690 kcal -analytic 66.348 0.0 -4298.2 -25.271 SiO2(a) SiO2 + 2 H2O = H4SiO4 log_k -2.710 delta_h 3.340 kcal -analytic -0.26 0.0 -731.0 Chalcedony SiO2 + 2 H2O = H4SiO4 log_k -3.550 delta_h 4.720 kcal -analytic -0.09 0.0 -1032.0 Quartz SiO2 + 2 H2O = H4SiO4 log_k -3.980 delta_h 5.990 kcal -analytic 0.41 0.0 -1309.0 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O log_k 8.110 delta_h -22.800 kcal Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O log_k 10.800 delta_h -26.500 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 log_k 7.435 delta_h -35.300 kcal Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 log_k -18.002 delta_h 25.896 kcal Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 log_k -19.714 delta_h 11.580 kcal K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 log_k -20.573 delta_h 30.820 kcal K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 log_k 12.703 delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O log_k 68.38 delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ log_k -45.027 delta_h 58.373 kcal Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 log_k 21.399 delta_h -46.352 kcal Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ log_k -40.267 delta_h 54.684 kcal Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 log_k 32.200 delta_h -46.800 kcal -analytic 13.248 0.0 10217.1 -6.1894 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 log_k 15.760 delta_h -10.700 kcal Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 log_k 18.660 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O log_k -4.008 delta_h -30.845 kcal Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O log_k -1.000 delta_h -14.48 kcal Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- log_k -18.479 delta_h 11.300 kcal FeS(ppt) FeS + H+ = Fe+2 + HS- log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- log_k -4.648 Sulfur S + 2H+ + 2e- = H2S log_k 4.882 delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O log_k -36.000 Pyrolusite MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O log_k 41.380 delta_h -65.110 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O log_k 61.030 delta_h -100.640 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O log_k 25.340 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O log_k 15.200 Halite NaCl = Na+ + Cl- log_k 1.582 delta_h 0.918 kcal CO2(g) CO2 = CO2 log_k -1.468 delta_h -4.776 kcal -analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0 O2(g) O2 = O2 log_k -2.960 delta_h -1.844 kcal H2(g) H2 = H2 log_k -3.150 delta_h -1.759 kcal H2O(g) H2O = H2O log_k 1.51 delta_h -44.03 kJ # Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978) N2(g) N2 = N2 log_k -3.260 delta_h -1.358 kcal H2S(g) H2S = H2S log_k -0.997 delta_h -4.570 kcal CH4(g) CH4 = CH4 log_k -2.860 delta_h -3.373 kcal NH3(g) NH3 = NH3 log_k 1.770 delta_h -8.170 kcal Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 log_k -2.209 delta_h 4.910 kcal -analytic 1.447 -0.004153 0.0 0.0 -214949.0 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O log_k -1.400 delta_h -50.250 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 log_k -9.210 delta_h -31.280 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O log_k 11.50 Smithsonite ZnCO3 = Zn+2 + CO3-2 log_k -10.000 delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- log_k -11.618 delta_h 8.250 kcal Willemite 289 Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 log_k 15.33 delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O log_k 13.650 Otavite 315 CdCO3 = Cd+2 + CO3-2 log_k -12.1 delta_h -0.019 kcal CdSiO3 328 CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 log_k 9.06 delta_h -16.63 kcal CdSO4 329 CdSO4 = Cd+2 + SO4-2 log_k -0.1 delta_h -14.74 kcal Cerrusite 365 PbCO3 = Pb+2 + CO3-2 log_k -13.13 delta_h 4.86 kcal Anglesite 384 PbSO4 = Pb+2 + SO4-2 log_k -7.79 delta_h 2.15 kcal Pb(OH)2 389 Pb(OH)2 + 2H+ = Pb+2 + 2H2O log_k 8.15 delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- log_k 0.0 Na+ + X- = NaX log_k 0.0 -gamma 4.0 0.075 K+ + X- = KX log_k 0.7 -gamma 3.5 0.015 delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX log_k -0.08 -gamma 6.0 0.0 delta_h 1.4 # Merriam & Thomas, 1956 NH4+ + X- = NH4X log_k 0.6 -gamma 2.5 0.0 delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2X- = CaX2 log_k 0.8 -gamma 5.0 0.165 delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 log_k 0.6 -gamma 5.5 0.2 delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2X- = SrX2 log_k 0.91 -gamma 5.26 0.121 delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2X- = BaX2 log_k 0.91 -gamma 5.0 0.0 delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 log_k 0.52 -gamma 6.0 0.0 Fe+2 + 2X- = FeX2 log_k 0.44 -gamma 6.0 0.0 Cu+2 + 2X- = CuX2 log_k 0.6 -gamma 6.0 0.0 Zn+2 + 2X- = ZnX2 log_k 0.8 -gamma 5.0 0.0 Cd+2 + 2X- = CdX2 log_k 0.8 Pb+2 + 2X- = PbX2 log_k 1.05 Al+3 + 3X- = AlX3 log_k 0.41 -gamma 9.0 0.0 AlOH+2 + 2X- = AlOHX2 log_k 0.89 -gamma 0.0 0.0 SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH log_k 0.0 Hfo_sOH + H+ = Hfo_sOH2+ log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH log_k 0.0 Hfo_wOH + H+ = Hfo_wOH2+ log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### # # Cations from table 10.1 or 10.5 # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ log_k -17.60 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ log_k 0.3 # table 10.5 # # Derived constants table 10.5 # # Magnesium Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ log_k -3.5 # table 10.5 # Iron Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ log_k 0.7 # LFER using table 10.5 Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ log_k -2.5 # LFER using table 10.5 ############################################### # ANIONS # ############################################### # # Anions from table 10.6 # # Phosphate Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O log_k 31.29 Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O # log_k 12.56 # # Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O # log_k 20.62 # 9/19/96 # Added analytical expression for H2S, NH3, KSO4. # Added species CaHSO4+. # Added delta H for Goethite. RATES ########### #K-feldspar ########### # # Sverdrup, H.U., 1990, The kinetics of base cation release due to # chemical weathering: Lund University Press, Lund, 246 p. # # Example of KINETICS data block for K-feldspar rate: # KINETICS 1 # K-feldspar # -m0 2.16 # 10% K-fsp, 0.1 mm cubes # -m 1.94 # -parms 1.36e4 0.1 K-feldspar -start 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) 3 rem parm(2) = corrects for field rate relative to lab rate 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) 10 dif_temp = 1/TK - 1/298 20 pk_H = 12.5 + 3134 * dif_temp 30 pk_w = 15.3 + 1838 * dif_temp 40 pk_OH = 14.2 + 3134 * dif_temp 50 pk_CO2 = 14.6 + 1677 * dif_temp #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time 81 rem decrease rate on precipitation 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 100 save moles -end ########### #Albite ########### # # Sverdrup, H.U., 1990, The kinetics of base cation release due to # chemical weathering: Lund University Press, Lund, 246 p. # # Example of KINETICS data block for Albite rate: # KINETICS 1 # Albite # -m0 0.43 # 2% Albite, 0.1 mm cubes # -parms 2.72e3 0.1 Albite -start 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) 3 rem parm(2) = corrects for field rate relative to lab rate 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) 10 dif_temp = 1/TK - 1/298 20 pk_H = 12.5 + 3359 * dif_temp 30 pk_w = 14.8 + 2648 * dif_temp 40 pk_OH = 13.7 + 3359 * dif_temp #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... 50 pk_CO2 = 14.0 + 1677 * dif_temp #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time 81 rem decrease rate on precipitation 90 if SR("Albite") > 1 then moles = moles * 0.1 100 save moles -end ######## #Calcite ######## # # Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, # American Journal of Science, v. 278, p. 179-216. # # Example of KINETICS data block for calcite rate: # # KINETICS 1 # Calcite # -tol 1e-8 # -m0 3.e-3 # -m 3.e-3 # -parms 5.0 0.6 Calcite -start 1 rem Modified from Plummer and others, 1978 2 rem parm(1) = A/V, 1/m parm(2) = exponent for m/m0 10 si_cc = si("Calcite") 20 if (m <= 0 and si_cc < 0) then goto 200 30 k1 = 10^(0.198 - 444.0 / (273.16 + tc) ) 40 k2 = 10^(2.84 - 2177.0 / (273.16 + tc) ) 50 if tc <= 25 then k3 = 10^(-5.86 - 317.0 / (273.16 + tc) ) 60 if tc > 25 then k3 = 10^(-1.1 - 1737.0 / (273.16 + tc) ) 70 t = 1 80 if m0 > 0 then t = m/m0 90 if t = 0 then t = 1 100 moles = parm(1) * (t)^parm(2) 110 moles = moles * (k1 * act("H+") + k2 * act("CO2") + k3 * act("H2O")) 120 moles = moles * (1 - 10^(2/3*si_cc)) 130 moles = moles * time 140 if (moles > m) then moles = m 150 if (moles >= 0) then goto 200 160 temp = tot("Ca") 170 mc = tot("C(4)") 180 if mc < temp then temp = mc 190 if -moles > temp then moles = -temp 200 save moles -end ####### #Pyrite ####### # # Williamson, M.A. and Rimstidt, J.D., 1994, # Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. # # Example of KINETICS data block for pyrite rate: # KINETICS 1 # Pyrite # -tol 1e-8 # -m0 5.e-4 # -m 5.e-4 # -parms 2.0 0.67 .5 -0.11 Pyrite -start 1 rem Williamson and Rimstidt, 1994 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) 3 rem parm(3) = exp for O2 parm(4) = exp for H+ 10 if (m <= 0) then goto 200 20 if (si("Pyrite") >= 0) then goto 200 20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) 30 moles = 10^rate * time 40 if (moles > m) then moles = m 200 save moles -end ########## #Organic_C ########## # # Example of KINETICS data block for Organic_C rate: # KINETICS 1 # Organic_C # -tol 1e-8 # # m in mol/kgw # -m0 5e-3 # -m 5e-3 Organic_C -start 1 rem Additive Monod kinetics 2 rem Electron acceptors: O2, NO3, and SO4 10 if (m <= 0) then goto 200 20 mO2 = mol("O2") 30 mNO3 = tot("N(5)") 40 mSO4 = tot("S(6)") 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) 70 moles = rate * m * (m/m0) * time 80 if (moles > m) then moles = m 200 save moles -end ########### #Pyrolusite ########### # # Postma, D. and Appelo, C.A.J., 2000, GCA 64, in press # # Example of KINETICS data block for Pyrolusite # KINETICS 1-12 # Pyrolusite # -tol 1.e-7 # -m0 0.1 # -m 0.1 Pyrolusite -start 5 if (m <= 0.0) then goto 200 7 sr_pl = sr("Pyrolusite") 9 if abs(1 - sr_pl) < 0.1 then goto 200 10 if (sr_pl > 1.0) then goto 100 #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 30 Fe_t = tot("Fe(2)") 32 if Fe_t < 1.e-8 then goto 200 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) 50 if moles > Fe_t / 2 then moles = Fe_t / 2 70 if moles > m then moles = m 90 goto 200 100 Mn_t = tot("Mn") 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time 120 if moles <= -Mn_t then moles = -Mn_t 200 save moles -end END